SoK: Cryptographic Neural-Network Computation

Lucien K. L. Ng¹, Sherman S. M. Chow²

¹Georgia Institute of Technology, USA <u>luciengkl@gatech.edu</u>

²Chinese University of Hong Kong, Hong Kong <u>sherman@ie.cuhk.edu.hk</u>

Privacy-preserving Neural Network (PPNN)

Privacy Services

- Oblivious Inference ⊆ Outsourced Inference
- Outsourced Inference ⊆ Outsourced Training
- Outsourced Training ⊆ Private Training
- Our Motivations
- Highlights of Three Types of Frameworks
- Evaluation over WAN

Oblivious Inference

Outsourced Inference

Oblivious Inference ⊆ Outsourced Inference

Outsourced/Private Training

- #Data Providers = $1 \Rightarrow$ Outsourced training
- #Data Providers $\geq 1 \Rightarrow$ Private training
- Outsourced Training ⊆ Private Training

Data Providers

- Outsourced Inference ⊆ Outsourced Training
 - Inference is a sub-routine of training

Our Goals

Dissect the rapid development

(e.g., the genealogy)

Help newcomers dive right into the crux

- Avoid reinventing the wheel
- Highlight open problems and challenges
 - (This talk will briefly mention some)

• Aid in fair comparison

Out of Scope

Use of trusted hardware / trusted execution environment

That's why "Cryptographic" in our title

Out of Scope (cont.)

Differential privacy

- Different concepts of privacy
- Different research challenges
- e.g., the curse of dimensionality in lang. model
 - [Du-Yue-Chow-Wang-Huang-Sun@CCS23]

Federated learning

- It leaks the models to the data providers
- Often uses "sum of PRF" techniques
 - [Naor-Pinkas-Reingold@EuroCrypt99]
 - [Chase-Chow@CCS09]
 - [Bonawitz et al.@CCS17]

Highlight of PPNN Development

to Encrypted Data with High Throughput and Accuracy.

Payman Mohassel, Yupeng Zhang. SecureML: A System for Scalable Privacy-Preserving Machine Learning. with VGG-16

Our Genealogy

: This framework appeared in a crypto/security/privacy venue
 : This framework appeared in a system/ML venue
 : This framework is a compiler framework

Framework Type vs. Privacy Service

Framework Type	Oblivious Inference	Outsourced Inference	Outsourced /Private Training						
Pure-LHE	\checkmark	0	×						
Mixed	\checkmark	×	×						
MPC-based	\checkmark	\checkmark	0						
✓: All frameworks su	oport O : Only som	e support 🛛 🗙: No t	X: No framework supports						

• LHE: Linear-Homomorphic Encryption; MPC: Secure Multi-party Computation

- Two other "less popular" framework types in our paper
 - Torus-based fully-homomorphic encryption
 - Pure garbled circuit

Paradigms for NN Computations

Handle <u>linear layers</u> and <u>non-linear layers</u> differently

Linear: e.g., Convolution, Matrix Multiplication

- Each output entry is an inner product of some input entries
- Output $y_i = \sum_j w_j \cdot w_j$, where w_j and x_j are from the inputs

(I) Pure LHE for Oblivious Inference

- Client: secret key holder, can decrypt [x] into the result x
 Server: owner of model w
- Linear Layers: $[y_i] = \sum_j w_j \cdot [x_j]$
 - [x] denotes encryption of x
- ML technique helps
 - Pruning sets some small model parameters w_i to 0
 - Server can skip computing $w_j \cdot [x_j]$

Non-linear Layers in Pure-LHE frameworks

Activation: "Simple" ones via Polynomial Approximation

- $[y_i] = a_0 + a_1 [x_i] + a_2 \cdot [x_i] \cdot [x_i] + \cdots$
- Approximation degrades accuracy
- Pooling: "Simple" Average Pooling
 - (additions with one division)
 - (non-linear) Max pooling usually gives higher accuracy

Bitwidth Issue

Plaintext NN operates in floating point (numbers)

- a much wider range than Z_q, i.e., integers, for [x]
- 256-bit to represent a floating point

• High bitwidth \rightarrow larger HE parameters \rightarrow worse performance in LHE

- "privately, efficiently, & accurately evaluate layers in low bitwidth?"
- "cater <u>dynamic</u> weights in secure training?"
- "guide non-cryptographers to select <u>"tight" HE parameters</u>?"
 - Compilers (Sec VIII.B)

(II) Mixed Frameworks

- Solving 2 issues in pure-LHE frameworks
 - 1st issue: LHE computation is slow
- Use additive sharing
 - addition over shares
- Each op costs just a few CPU instructions
 - >100× faster than LHE ops (ignoring communication)

Multiplications need pre-processing (e.g., by LHE) in offline time
 Online: The query became known, use pre-computed results

Comparison (CMP) in Non-linear Layer

- 2nd Issue: Polynomial approximation harms accuracy
- In many non-linear layers, comparison $(x \le y)$ is a fundamental operation
 - ReLU(x) = Max(x, 0), Maxpool($\{x\}_{0..3}$) = Max(x₀, x₁, x₂, x₃)
- NN Architecture Search (Delphi [USS20])
 - Approx. only some CMP

Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, Raluca Ada Popa. Delphi: A Cryptographic Inference Service for Neural Networks.

- Use GPU to securely compute "linearized" CMP (GForce [USS21])
 - >30× faster than garbled circuit
 Lucien K. L. Ng, Sherman S. M. Chow.
 GForce: GPU-Friendly Oblivious and Rapid Neural Network Inference.
- "How to implement an even more efficient CMP?"
- "What can other crypto primitives be made GPU/TPU-friendly?"

(III) Non-Colluding Assumption

- Servers that will not reveal their secret to any other parties
- mPC framework assumes m non-colluding servers
- 3PC frameworks make a stronger assumption than 2PC ones
 - A server only needs to compromise 1 among 2 others instead of a fixed 1
- More servers, higher throughput
 - 3rd server can prepare Beaver's triplets
 - if only 2 servers, they need to interact
- Training needs millions of iteration of inferences

Framework	#	Guarantee
SecureML [13], Quotient [74], ABY2.0 [84]	2	_
CrypTen [77], Piranha [109]	≥ 2	_
QuantizedNN [72]	2/3	Abort
Chameleon [86], CrypTFlow [107]	3	_
CryptGPU [51]	3	_
ABY3 [88], SecureNN [68]	3	Abort
FalconN [69], AdamInPrivate [90]	3	Abort
Blaze [76]	3	Fair
Swift [89], Fantastic 4 [85]	3/4	G.O.D.
Flash [75]	4	G.O.D.
Trident [50]	4	Fair
GarbledNN [64], XONN [63]	_	Abort
Muse [114]	-	Client
		19/24

Complex Function Evaluation

- BatchNorm can be reduced to 1 / sqrt(x) over secret x
 Softmax can be reduced to x / y and e^x over secret x & y
- "How to efficiently & accurately approximate x / y, 1 / sqrt(y), e^x, sigmoid(x), and tanh(x) for secret x and y?"
- "How to realize <u>high throughput</u> and <u>accurate</u> private training without non-colluding assumptions?"

Framework Summary (\bigtriangledown : Oblivious Inference, \blacksquare : Outsourced Inference, \Box : Outsourced Training, \blacksquare : Private Training)

	Framework	Ba	Fixed-Point Non-Linear					Optimization							Datasets				Crypto Tools					
		Refere	nce Year	Priv	acy Se Tru	nc. 81	Nrap Jidth Bl	2NN Poli	J. CN VDL	iP Nu	nn. Me Off	inelOr HE	Uptime SIMD SIMD	ua. GPI	lghts ^J Opt	unize Cor	Arch. npiler MN	IST CIF	AR-10 CIF	AR-10 Im ²	0 . ^{geNet} GC	GNN OT	૬૬	HE
Pure-HE	CryptoNets BNormCrypt CryptoDL Faster-Crypt HCNN E2DM nGraph-HE nGraph-HE2 PlaidML-HE	[11] [53] [54] [55] [56] [57] [102] [105] [106]	16 17^* 17 18^* 21 18 19 19 19 19	$\begin{array}{c} \bigtriangledown\\ $	000000000000000000000000000000000000000	H H? H L H H H H	- - Q - - - -		000000000000000000000000000000000000000	- - - - - - -	000000000000000000000000000000000000000		000000000000000000000000000000000000000		000000000000000000000000000000000000000				000000000000000000000000000000000000000		000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	L L L L L L L L L
Non-Colluding MPC	CrypTFlow ABY3 Flash Blaze Swift Trident Fantastic 4 QuantizedNN AdamInPrivate SecureNN FalconN CrypTen CryptGPU Piranha	[107] [88] [75] [76] [89] [50] [85] [72] [90] [68] [69] [77] [51] [109]	$\begin{array}{c} 20 \\ 18 \\ 20 \\ 20 \\ 21 \\ 20 \\ 21 \\ 20 \\ 22 \\ 19 \\ 21 \\ 21 \\ 21 \\ 21 \\ 22 \end{array}$			H H H H H H L H H H H H	- - - - Q Q - - - -	000000000000000000000000000000000000000		- - - - I I I I I I I		000000000000000000000000000000000000000		$\bigcirc \bigcirc $	000000000000000000000000000000000000000	$\begin{array}{c} \bullet \\ \circ \\$			000000000000000000000000000000000000000	$\begin{array}{c} \bullet \\ \circ \\$		000000000000000000000000000000000000000		- - - - - - - - - - - - -

H: >32-bit, L: \leq 32, M: mixed, ?: unspecified; I: iterative, T: table lookup; L: LHE, T: TFHE; * marks the earliest appearance of the preprint; • adopter of existing techniques / w/o acc. or end-to-end inf. results; • original contributor / with performance & accuracy;

(IV) Performance Evaluation

Mixed frameworks minimize online inference latency on LAN

Re-evaluation on WAN

Run the state-of-the-art frameworks on the same hardware

"Can we build a universal compiler that enables rapid prototyping and allow uniform experimental comparison?"

Full Version: sokcryptonn.github.io

- More Details on Cryptography
- Interactive Charts and Genealogy
- Update to include new works
 - Contact us if you feel we missed your work!