A Plug-and-Play Long-Range Defense System
for Proof-of-Stake Blockchains

Lucien K. L. Ng, Panagiotis Chatzigiannis, Duc V. Le,
Mohsen Minaei, Ranjit Kumaresan, Mahdi Zamani

Georgia V’ SA

Tech. Research

From Po\W to PoS

* Proof-of-Work (PoW) consensus is highly energy-inefficient
* Validators (Miners) use ton of electricity just for reaching consensus

* Proof-of-Stake (PoS) is more energy-efficient
L eaders are selected based on their staked wealth on-chain

How (Penalty-Based) PoS works?

e Validators stake their coins on the blockchain

* If they comply with the protocol, they will earn reward
* And they can withdraw their stake and reward after a lock-up period

* |If they misbehave, their stake will be forfeited
* What if they misbehave after they have withdrawn their coins?

l oy |£Dli oy

N

Posterior Key Corruption

1 w1
1 w1

1 Wy 1

Long-Range Attack

* Once an adversary has gathered enough old validation keys
* it can fork another valid chain and double-spend!

‘ ‘ BlOCkI+2 ‘ h ‘

Adv spent 10M coins

Adv spent 10M coins now

Adv sper ‘M coins

Possibility of Long-Range Attack

* Coinvalues can fluctuate a lot
* Selling old keys become more profitable (than protecting the assets)
* Attackers launch long-range attacks when coin value bounces back

5,000
993.64 Jun 17, 2022
4,000

3,000

2,000

ETH Price (USD)

1,000

| |
2019 2022

Unsatisfying Solution: Checkpointing

* Digests of old blocks are hardcoded in the node’s software
* Centralization Issue: the software developers can launch attacks

* A few centralized servers broadcast the digests
* When there are conflicts, who should the client trust?

Network: Mainnet
Operation Mode: Full
Lodestar About (1)

An Ethereum beacon chain checkpoint sync provider

Latest Finalized ® Latest Justified ®
Epoch: 278705 Epoch: 278706
Block Root: Oxdeba58. . .afedf9 Block Root: 0x0f1fa3. . .abeeSc

Checkpoints JEUSIES

Alist of historical finalized epoch boundaries. The checkpoint currently being served has the [icon.

Epoch Slot Time State Root

278704
278703
278702 8918464 35minutesago @xd61b6cac610434eca5clba8d28755c54887d2c01e7d4d935513F569e54ac7f24(5) 0x4f277199fabb2c9955a979e1cae611e310e882e1b866102559¢F1;

278701 8918432 41minutesago 0x103c95c2446¢328bb17badf3d5be637ac3eh577h553531a0526167243795212e () 0x2b088dbO1096f fh6ada7 f6dccadIbshl7ccfbb5331729579h28d91

Unsatisfying Solution: Finality Gadgets

* Ethereum requires 2/3 of the validators to sign on the checkpoints
* (Otherwise, the transactions in the checkpoint are not finalized)
* [t assumes <1/3 validators are malicious

* [tisjust asking the adversary to acquire more old keys

Checkpoint; Checkpoint,

Finality Gadget Finality Gadget

Unsatisfying Solution: Always-Online Nodes

* Servers monitoring the chain know which fork is authentic
* The checkpoints produced first are the genuine ones
* (More about it later)

e But how about clients?

Clients

* New clients have no knowledge about blockchain’s history
* Existing Clients might be offline for a long period
* They may see two equally valid checkpoints when logging on

* The client are also “light”
* with limited computation and communication capability

 Can the servers help them?
 Wait... the servers can be malicious

Our Solution

* A defense system against long-range attacks
* |t helps light clients to distinguish which fork is authentic

* Advantages:
* Plug-and-play: No soft nor hard-forks needed
* Reasonable Assumptions: our defense works as long as one server is honest
* Light-client friendly: Clients only need to verify succinct proofs

System Setting and Threat Model

* For simplicity, we assume there are only two servers
e Oneis honest, and the other is malicious

* The attacker can only corrupt keys of past (but not current) validators

f‘: N 3 {‘ S 3 (E *ova
-
\ e /

without any knowledge of blockchain’s history

Timestamp

* The checkpoints produced first are the genuine ones
* The servers timestamps the checkpoints and their finality proofs
* How to timestamp? Verifiable Delay Functions (VDF)

Time

Server’s Workflow

* No change to the blockchain’s consensus protocol

External Server

timestamp timestamp

Checkpoint,
Finality Gadget Finality Gadget

Existing PoS Blockchain System

Client’s Workflow

Server 1

Common Prefix
Found by a Bisection Gameg

Checkpoint; [REEH) Light Client

Server 2

Timestamp.Verify(KeiEEe? ,Tz,) Timestamp.Verify(

* Acceptthe block with an earlier timestamp

Background: Verifiable Delay Function (VDF)

* Informal Definition:
* VDF(x, t) can only be computed with t unit of time
* [t can be succinctly proven

* [t usually is based on repeated squaring assumption

t : .. : :
* x* mod N is most efficiently computed by sequential squaring
* The group order is unknown, e.g., N is an RSA modulus

* Some schemes relies on other assumptions, e.g., lattice-based.

v
VDF(x, 10 Years)

w/ Proof

15t |ssue about VDF

* VDF is not ever-going

Canyou provide proof that it has been running for 1 year?

VDF(x, 10 Years)

2"d |ssue about VDF

* The input x has to be committed in the beginning

VDF)

VDF(...)

VDR

* Ethereum has >250k checkpoints...

Insertable Proof-of-Sequential-Work (InPoSW)

* At any time point (st;), the prover can
* Op 1: Insert data for timestamping
* Op 2: Prove some data was insertk - A ago

AT AT AT AT
St1 > > St3 > > St4 --------- >

X Proof: x was inserted 2A; ago

* Remark: Compared to PoW, PoOSW cannot be parallelized

Strawman InPoSW Scheme

« @ Not succinct: The verifier needs to verify k VDF proofs

VDF(st;, Ar) VDF(st,, AT) VDF(sty», AT)

S B

Proof: x was inserted kA ago

Our Skiplist-Style Construction for InPoSW

AA 4Ar
20 2A 20, 20,
Ap A A A A Ar A A A A
— ———y | ————————————y —————— | ———)py —— P —_—— | ——————)| e >
x Proof for x

* Prover Storage: O(N) VDF Proofs
« © Verification Cost: O(N) — O(log N) VDF Verification

Estimation of Concrete Cost

We set Ar = 3.6 minutes

¢ We use Ethereum aS Our reference . » which translates to 233 repeated squaring

. Ethereum emits a checkpoint every 6 minutes
* After 10 years of running our system

* The server stores = 546 GB of data
* >22x less than adopting existing solution

* The proof sizeis = 20 KB
* >17000x less than adopting existing solution
* Prior Solution that can be modified for InPoSW

* An Incremental PoSW for General Weight Distributions [EC ‘23]
* Graph-Labeling PoSW Scheme

Conclusion

* Long-range attack can bring devastating outcomes to PoS blockchains
* And existing solutions are unsatisfying

* We propose a solution that
* has reasonable assumption (at least 1 server being honest)
* requires no soft/hardfork
* is light-client friendly

* We propose a construction of InPoSW
* |t allows cost-efficient timestamping on data arriving at different times
* [t could be of independent interest for other timestamp applications

Questions?

