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From PoW to PoS

• Proof-of-Work (PoW) consensus is highly energy-inefficient
• Validators (Miners) use ton of electricity just for reaching consensus

• Proof-of-Stake (PoS) is more energy-efficient
• Leaders are selected based on their staked wealth on-chain



How (Penalty-Based) PoS works? 

• Validators stake their coins on the blockchain
• If they comply with the protocol, they will earn reward
• And they can withdraw their stake and reward after a lock-up period

• If they misbehave, their stake will be forfeited
• What if they misbehave after they have withdrawn their coins?

???



Posterior Key Corruption



Long-Range Attack

• Once an adversary has gathered enough old validation keys
• it can fork another valid chain and double-spend!
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Possibility of Long-Range Attack

• Coin values can fluctuate a lot
• Selling old keys become more profitable (than protecting the assets)
• Attackers launch long-range attacks when coin value bounces back
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Unsatisfying Solution: Checkpointing

• Digests of old blocks are hardcoded in the node’s software
• Centralization Issue: the software developers can launch attacks

• A few centralized servers broadcast the digests
• When there are conflicts, who should the client trust?



Unsatisfying Solution: Finality Gadgets

• Ethereum requires 2/3 of the validators to sign on the checkpoints
• (Otherwise, the transactions in the checkpoint are not finalized)
• It assumes <1/3 validators are malicious

• It is just asking the adversary to acquire more old keys
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Unsatisfying Solution: Always-Online Nodes

• Servers monitoring the chain know which fork is authentic
• The checkpoints produced first are the genuine ones
• (More about it later)

• But how about clients?



Clients

• New clients have no knowledge about blockchain’s history
• Existing Clients might be offline for a long period
• They may see two equally valid checkpoints when logging on

• The client are also “light”
• with limited computation and communication capability

• Can the servers help them?
• Wait… the servers can be malicious



Our Solution

• A defense system against long-range attacks
• It helps light clients to distinguish which fork is authentic

• Advantages:
• Plug-and-play: No soft nor hard-forks needed
• Reasonable Assumptions: our defense works as long as one server is honest
• Light-client friendly: Clients only need to verify succinct proofs



System Setting and Threat Model

• For simplicity, we assume there are only two servers
• One is honest, and the other is malicious

• The attacker can only corrupt keys of past (but not current) validators 
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without any knowledge of blockchain’s history



Timestamp

• The checkpoints produced first are the genuine ones
• The servers timestamps the checkpoints and their finality proofs
• How to timestamp? Verifiable Delay Functions (VDF)
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Server’s Workflow

• No change to the blockchain’s consensus protocol

Block Block Block Block

Checkpoint1

st1 st2

Checkpoint2

Finality Gadget Finality Gadget

Existing PoS Blockchain System

External Server

timestamptimestamp



Client’s Workflow
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Found by a Bisection Game
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• Accept the block with an earlier timestamp



Background: Verifiable Delay Function (VDF)

• Informal Definition:
• VDF(x, t) can only be computed with t unit of time
• It can be succinctly proven

• It usually is based on repeated squaring assumption
• 𝑥!!  mod N is most efficiently computed by sequential squaring

• The group order is unknown, e.g., N is an RSA modulus
• Some schemes relies on other assumptions, e.g., lattice-based.
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1st Issue about VDF

• VDF is not ever-going

x
VDF(x, 10 Years)

Can you provide proof that it has been running for 1 year?



2nd Issue about VDF

• The input x has to be committed in the beginning

• Ethereum has >250k checkpoints…

x1 VDF(…)
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Insertable Proof-of-Sequential-Work (InPoSW)

• At any time point (sti), the prover can
• Op 1: Insert data for timestamping
• Op 2: Prove some data was insert k ⋅ 	Δ" ago

st1 st2 st3 st4
Δ! Δ!Δ!

𝑥

st4
Δ!

Proof: x was inserted 2Δ!  ago

• Remark: Compared to PoW, PoSW cannot be parallelized



Strawman InPoSW Scheme

•😭 Not succinct: The verifier needs to verify 𝑘 VDF  proofs
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VDF(st1, Δ!)

𝑥

Stk+2

Proof: x was inserted kΔ!  ago
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…
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Our Skiplist-Style Construction for InPoSW

• Prover Storage: 𝑂 𝑁  VDF Proofs
•😁 Verification Cost: 𝑂 𝑁 → 𝑂 log	𝑁  VDF Verification
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Estimation of Concrete Cost

• We use Ethereum as our reference
• After 10 years of running our system
• The server stores ≈ 546 GB of data 

• >22x less than adopting existing solution
• The proof size is ≈ 20 KB

• >17000x less than adopting existing solution

• Prior Solution that can be modified for InPoSW
• An Incremental PoSW for General Weight Distributions [EC ‘23]

• Graph-Labeling PoSW Scheme

• We set Δ! ≈ 3.6 minutes
• which translates to 2"" repeated squaring

• Ethereum emits a checkpoint every 6 minutes



Conclusion

• Long-range attack can bring devastating outcomes to PoS blockchains
• And existing solutions are unsatisfying

• We propose a solution that
• has reasonable assumption (at least 1 server being honest)
• requires no soft/hardfork
• is light-client friendly

• We propose a construction of InPoSW
• It allows cost-efficient timestamping on data arriving at different times
• It could be of independent interest for other timestamp applications

Questions?


