
A Plug-and-Play Long-Range Defense System
for Proof-of-Stake Blockchains
Lucien K. L. Ng, Panagiotis Chatzigiannis, Duc V. Le,
Mohsen Minaei, Ranjit Kumaresan, Mahdi Zamani

From PoW to PoS

• Proof-of-Work (PoW) consensus is highly energy-inefficient
• Validators (Miners) use ton of electricity just for reaching consensus

• Proof-of-Stake (PoS) is more energy-efficient
• Leaders are selected based on their staked wealth on-chain

How (Penalty-Based) PoS works?

• Validators stake their coins on the blockchain
• If they comply with the protocol, they will earn reward
• And they can withdraw their stake and reward after a lock-up period

• If they misbehave, their stake will be forfeited
• What if they misbehave after they have withdrawn their coins?

???

Posterior Key Corruption

Long-Range Attack

• Once an adversary has gathered enough old validation keys
• it can fork another valid chain and double-spend!

Blocki Blocki+1 Blocki+2 Blockn
….

Blocki+1 Blocki+2 Blockn
….

Adv spent 10M coins

Adv spent 10M coins nowAdv spent 10M coins

Possibility of Long-Range Attack

• Coin values can fluctuate a lot
• Selling old keys become more profitable (than protecting the assets)
• Attackers launch long-range attacks when coin value bounces back

ET
H

 P
ric

e
(U

SD
)

Unsatisfying Solution: Checkpointing

• Digests of old blocks are hardcoded in the node’s software
• Centralization Issue: the software developers can launch attacks

• A few centralized servers broadcast the digests
• When there are conflicts, who should the client trust?

Unsatisfying Solution: Finality Gadgets

• Ethereum requires 2/3 of the validators to sign on the checkpoints
• (Otherwise, the transactions in the checkpoint are not finalized)
• It assumes <1/3 validators are malicious

• It is just asking the adversary to acquire more old keys

Block Block Block Block

Checkpoint1 Checkpoint2

Finality Gadget Finality Gadget

Unsatisfying Solution: Always-Online Nodes

• Servers monitoring the chain know which fork is authentic
• The checkpoints produced first are the genuine ones
• (More about it later)

• But how about clients?

Clients

• New clients have no knowledge about blockchain’s history
• Existing Clients might be offline for a long period
• They may see two equally valid checkpoints when logging on

• The client are also “light”
• with limited computation and communication capability

• Can the servers help them?
• Wait… the servers can be malicious

Our Solution

• A defense system against long-range attacks
• It helps light clients to distinguish which fork is authentic

• Advantages:
• Plug-and-play: No soft nor hard-forks needed
• Reasonable Assumptions: our defense works as long as one server is honest
• Light-client friendly: Clients only need to verify succinct proofs

System Setting and Threat Model

• For simplicity, we assume there are only two servers
• One is honest, and the other is malicious

• The attacker can only corrupt keys of past (but not current) validators

Server Server Server Server

Light Client

….

….

without any knowledge of blockchain’s history

Timestamp

• The checkpoints produced first are the genuine ones
• The servers timestamps the checkpoints and their finality proofs
• How to timestamp? Verifiable Delay Functions (VDF)

Checkpoint Checkpoint

Time

Server’s Workflow

• No change to the blockchain’s consensus protocol

Block Block Block Block

Checkpoint1

st1 st2

Checkpoint2

Finality Gadget Finality Gadget

Existing PoS Blockchain System

External Server

timestamptimestamp

Client’s Workflow

Block Block

Block Block Block Block

Checkpoint1

st1

Block Block Block Block

Checkpoint1

st1

Server 1

Server 2
Common Prefix

Found by a Bisection Game

Timestamp.Verify(, T2,) Timestamp.Verify(, T1,) Light ClientCheckpoint1 st1 st1Checkpoint1

• Accept the block with an earlier timestamp

Background: Verifiable Delay Function (VDF)

• Informal Definition:
• VDF(x, t) can only be computed with t unit of time
• It can be succinctly proven

• It usually is based on repeated squaring assumption
• 𝑥!! mod N is most efficiently computed by sequential squaring

• The group order is unknown, e.g., N is an RSA modulus
• Some schemes relies on other assumptions, e.g., lattice-based.

x
VDF(x, 10 Years)

y
w/ Proof

1st Issue about VDF

• VDF is not ever-going

x
VDF(x, 10 Years)

Can you provide proof that it has been running for 1 year?

2nd Issue about VDF

• The input x has to be committed in the beginning

• Ethereum has >250k checkpoints…

x1 VDF(…)

x2 VDF(…)

x3 VDF(…)

Insertable Proof-of-Sequential-Work (InPoSW)

• At any time point (sti), the prover can
• Op 1: Insert data for timestamping
• Op 2: Prove some data was insert k ⋅ 	Δ" ago

st1 st2 st3 st4
Δ! Δ!Δ!

𝑥

st4
Δ!

Proof: x was inserted 2Δ! ago

• Remark: Compared to PoW, PoSW cannot be parallelized

Strawman InPoSW Scheme

•😭 Not succinct: The verifier needs to verify 𝑘 VDF proofs

st1 st2 Stk+3

VDF(st1, Δ!)

𝑥

Stk+2

Proof: x was inserted kΔ! ago

VDF(st2, Δ!)
…

VDF(stk+2, Δ!)

Our Skiplist-Style Construction for InPoSW

• Prover Storage: 𝑂 𝑁 VDF Proofs
•😁 Verification Cost: 𝑂 𝑁 → 𝑂 log	𝑁 VDF Verification

Δ! Δ! Δ! Δ!

2Δ! 2Δ!

Δ! Δ!

4Δ!

2Δ!

Δ! Δ! Δ!

4Δ!

2Δ!

Δ!

𝑥 Proof for x

Estimation of Concrete Cost

• We use Ethereum as our reference
• After 10 years of running our system
• The server stores ≈ 546 GB of data

• >22x less than adopting existing solution
• The proof size is ≈ 20 KB

• >17000x less than adopting existing solution

• Prior Solution that can be modified for InPoSW
• An Incremental PoSW for General Weight Distributions [EC ‘23]

• Graph-Labeling PoSW Scheme

• We set Δ! ≈ 3.6 minutes
• which translates to 2"" repeated squaring

• Ethereum emits a checkpoint every 6 minutes

Conclusion

• Long-range attack can bring devastating outcomes to PoS blockchains
• And existing solutions are unsatisfying

• We propose a solution that
• has reasonable assumption (at least 1 server being honest)
• requires no soft/hardfork
• is light-client friendly

• We propose a construction of InPoSW
• It allows cost-efficient timestamping on data arriving at different times
• It could be of independent interest for other timestamp applications

Questions?

