
Goten: GPU-Outsourcing Trusted Execution of Neural Network Training

Lucien K. L. Ng,1 Sherman S. M. Chow,1 Anna P. Y. Woo,1 Donald P. H. Wong,1 Yongjun Zhao2

1 Department of Information Engineering, The Chinese University of Hong Kong, Hong Kong
2 Strategic Centre for Research in Privacy-Preserving Technologies & Systems, Nanyang Technological University, Singapore

{luciengkl, sherman, wpy018, wph019}@ie.cuhk.edu.hk, yongjun.zhao@ntu.edu.sg

Abstract
Deep learning unlocks applications with societal impacts,
e.g., detecting child exploitation imagery and genomic analy-
sis of rare diseases. Deployment, however, needs compliance
with stringent privacy regulations. Training algorithms that
preserve the privacy of training data are in pressing need.
Purely cryptographic approaches can protect privacy, but they
are still costly, even when they rely on two or more non-
colluding servers. Seemingly-“trivial” operations in plain-
text quickly become prohibitively inefficient when a series
of them are “crypto-processed,” e.g., (dynamic) quantization
for ensuring the intermediate values would not overflow.
Slalom, recently proposed by Tramèr and Boneh, is the first
solution that leverages both GPU (for efficient batch compu-
tation) and a trusted execution environment (TEE) (for min-
imizing the use of cryptography). Roughly, it works by a lot
of pre-computation over known and fixed weights, and hence
it only supports private inference. Five related problems for
private training are left unaddressed.
Goten, our privacy-preserving training and prediction frame-
work, tackles all five problems simultaneously via our care-
ful design over the “mismatched” cryptographic and GPU
data types (due to the tension between precision and ef-
ficiency) and our round-optimal GPU-outsourcing protocol
(hence minimizing the communication cost between servers).
It 1) stochastically trains a low-bitwidth yet accurate model,
2) supports dynamic quantization (a challenge left by
Slalom), 3) minimizes the memory-swapping overhead of the
memory-limited TEE and its communication with GPU, 4)
crypto-protects the (dynamic) model weight from untrusted
GPU, and 5) outperforms a pure-TEE system, even without
pre-computation (needed by Slalom). As a baseline, we build
CaffeScone that secures Caffe using TEE but not GPU; Goten
shows a 6.84× speed-up of the whole VGG-11. Goten also
outperforms Falcon proposed by Wagh et al., the latest se-
cure multi-server cryptographic solution, by 132.64× using
VGG-11. Lastly, we demonstrate Goten’s efficacy in training
models for breast cancer diagnosis over sensitive images.

Introduction
Advances in data science are undoubtedly changing our
lives. In particular, deep neural networks (DNN) show un-
precedented performance in many life-changing applica-
tions, such as genomic analysis of rare diseases, medical

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

image analysis (cf., decision-tree classifiers (Tai et al. 2017;
Ma et al. 2021)), and child exploitation imagery (CEI) detec-
tion (cf., PhotoDNA1 by Microsoft, which simply compares
the hashes of the images) (Wagh et al. 2021). Their success
requires voluminous data, but stringent privacy regulations
are curbing data collection. This motivates a flurry of re-
search in privacy-preserving machine-learning algorithms in
recent years, such as private inference (Chandran et al. 2019;
Wong et al. 2020; Ng and Chow 2021). Private training is
much more complicated, as indirectly reflected by the fact
that recent solutions (e.g., (Mohassel and Rindal 2018)) re-
sort to the secure multi-server computation model, requir-
ing the servers (up to four (Chaudhari, Rachuri, and Suresh
2020)) to not collude with each other. This model enables
processing private data via lightweight techniques, such
as secret sharing, in contrast to single-server approaches
(that often use homomorphic encryption). Nevertheless, it is
still orders of magnitude slower than plaintext computation.
Falcon (Wagh et al. 2021), the state-of-the-art using three
servers, takes weeks to train a neural network for classifying
CIFAR-10, a medium-level image classification dataset.

We note that no existing private training approaches can
leverage GPU, albeit being a usual practice in (plaintext)
DNN training. Meanwhile, we see a trend in using trusted
execution environments (TEEs) to minimize the use of cryp-
tography in processing private data (Shaon et al. 2017;
Hynes, Cheng, and Song 2018). We are thus intrigued to ask:

Can we support DNN training (and prediction) by using
TEE and untrusted GPU while preserving the privacy
of all stakeholders? How much speedup can we gain?

The security guarantee of TEE is bounded within the CPU
and its fixed memory. It is non-trivial to use GPU for pro-
cessing private data efficiently. Specifically, GPU does not
natively support cryptographic operations over a finite field.

Solving Five (Open) Problems in One Scheme
To better understand the challenges in solving the above
problems, we revisit how Slalom (Tramèr and Boneh 2019),
the state-of-the-art TEE+GPU solution, performs private
prediction, and why it fails to support private training. The
core idea of Slalom can be described in simple terms. Firstly,

1https://www.microsoft.com/en-us/photodna



for a linear function f , f(r) is precomputed for a one-time
random blinding factor r in Zq (q is a large prime). When
the input x is known, it first applies static quantization on x
(to make it an element of the cryptographic finite field Zq),
then outsources x′ = x + r mod q to the untrusted GPU
for computing f(x + r). Given x′, there always exists r for
each possible x, hence providing secrecy (as one-time pad).
When TEE gets back f(x+ r) = f(x) + f(r) (f is linear),
it “unblinds” using f(r) to obtain f(x), the private result.

Five challenges remain unsolved for training.
1. Slalom critically relies on a lot of precomputation. Each

input x consumes one such f(r), and asking the untrusted
GPU to compute f(r) is insecure (no protection over
f(x)). If we just ask the TEE to compute f(r), it is of the
same complexity as f(x). If we load them to the TEE on-
spot, they are subjected to the memory limit (practically
∼90MB) and incur unwanted communication overhead.
Minimizing loadings to TEE is one of our design goals.

2. Such precomputation only works when W is a fixed pa-
rameter (of fW (x) := x ·W ), which is naturally changing
during training, making precomputed fW (r) useless.

3. Slalom works since the untrusted GPU knows W of fW ,
but it should be protected in private training (or securely-
outsourced prediction) – a challenge explicitly left open.

4. Slalom works with a fixed q and explicitly left dynamic
quantization as one of the open challenges. Also, as men-
tioned, DNN weights are not fixed in training. Weight
fluctuations further complicate dynamic quantization.

5. Finally, Slalom is an offline/online design but is not a
“truly” outsourcing solution. The time needed for the TEE
(i.e., computing f(r)) is the same as the time for the job
to be outsourced (i.e., computing f(x)). Once the precom-
putation is “used up,” no more outsourcing is possible.

GPU-Outsourcing Trusted Execution of NN
We propose Goten, the first GPU+TEE framework that pro-
tects prediction queries, training data, and model parame-
ters. Goten achieves a higher throughput without worrying
that the offline preparation will be exhausted when the de-
mand reaches its peak. We thus achieve “true” outsourcing
– the time needed for securely outsourcing the job to the un-
trusted GPU is less than that for computing the job locally
by the TEE plus any time needed for precomputation.
Empirical Evaluation. This is also the first work with ex-
tensive experimental investigations of the above possibility.
Concretely, we show that we can improve the performance
of VGG11 by 6.84×, achieving the highest efficiency so far.
Our code is available at github.com/goten-team/Goten.
Dynamic Quantization Scheme. We quantize the neural
network parameters to fixed-point number format for ef-
ficient cryptographic operations (cf., static quantization in
Slalom). This process needs to be implemented carefully:

1. Matrix multiplications in DNN scale up the outputs
quickly. The data type’s numeric limit is easily exceeded.

2. Some functions map values to a small interval (e.g.,
softmax(), sigmoid()), which require high precision.

To avoid these potential accuracy problems, we developed
a data-type conversion scheme for enjoying “the best of both
worlds,” i.e., the benefit of accurate floating-point operations
on TEE and efficient fixed-point operations on GPUs. Our
experiment confirms Goten’s high accuracy.

Secure GPU-Outsourcing Protocol. Finally, we design a
new outsourcing protocol (from TEE to the untrusted GPU)
that speeds up linear computations (e.g., matrix multiplica-
tion). It prevents leaking information to the hosts of (un-
trusted) GPU via additive secret sharing. While secret shar-
ing has been extensively used, existing designs assume a
general scenario and do not consider the characteristics of
TEE and GPU. Our protocol leverages the best of TEE (for
deriving randomness) and GPU (for batch processing).

Also, the CPU needs to convert data of linear layers into
the format used by secret sharing and then convert the secret-
shared results from GPU back into the usual format for non-
linear layers. We call these procedures pre-processing and
post-processing of outsourcing. We need a clever design to
make sure their cost will not offset the performance gained.

A trivial approach to protecting two operands a and b is
to encrypt them to the TEE enclave and ask it to multiply
them directly. However, it cannot enjoy the batch-processing
advantage of GPU and is inefficient for large-scale compu-
tation. Our protocol uses the enclave to secure the unpro-
tected computation environment of GPU, without the en-
clave performing any relatively expensive decryption be-
yond the “bare minimum,” i.e., two instances of decryption
(for the two operands). Our protocol is also round-optimal.
Once the enclaves are “bootstrapped,” they only need to out-
source the computation with one message flow and then get
back the results from the GPUs with another. It is impor-
tant for minimizing the communication overhead between
the servers (while TEE and GPU are co-located in Slalom).
We achieve this by our adaption of the original Beaver’s pro-
tocol (Beaver 1991) for multiplications of additive shares.

Memory-aware Measures. We utilize Intel SGX as TEE,
which has a memory limit of 90MB (Shaon et al. 2017)
among the 128MB limit claimed by Intel. It is not suffi-
cient for training large neural networks like VGG. Although
paging in Linux SGX SDK can over-subscribe memory, it
imposes much performance overhead (10× to 1000×) over
unprotected programs (Arnautov et al. 2016) for exiting the
enclave mode and switching back after processing the un-
trusted memory. To prevent the overhead that might nullify
Goten’s performance gain, we take extra measures to reduce
overheads by looking into our specific DNN operations and
using the enclave itself to handle memory swapping.

Summary of Contribution. As the pipeline in Figure 1,
Goten dynamically (de-)quantizes the inputs (and outputs) of
linear layers according to SWALP (Yang et al. 2019), a low-
precision training scheme, to cater for the finite field used
by our new secure GPU outsourcing protocol. Our protocol
enjoys (untrusted) GPU’s high performance with protection
but without sacrificing accuracy or incurring high costs com-
municating data to or processing data within the TEE that
may nullify any performance gain from GPU outsourcing.



Preliminaries
(A Simplified View of) Neural Networks
Linear layers have a basic form of y = w ⊗ x, where x
is the input, and w is the learnable parameters we aim to
protect. ⊗ is usually matrix multiplication, convolution, or
their corresponding operations for computing gradient, e.g.,
transposed convolution. Linear transformation is the most
computationally intensive part (Jia 2014). It remains so no
matter in plaintext or in Goten (as shown in our experiment).

For non-linear layers, we have —
i) Activation layer applying non-linear functions on its input.
ii) Pooling layer applying aggregation, e.g., max(), mean().
iii) Normalization layer normalizing each pixel by subtract-
ing the mean and dividing by the variance (e.g., batch nor-
malization deriving statistics parameters along the batch).

Very deep convolutional network (VGG) is a family of
very deep DNN with 9 to 19 layers with parameters and
has extraordinary performances on visual tasks. Supporting
VGG for private training/inference is thus desirable.

Two-Party Computation via Secret Sharing
Servers U0 and U1 holding a, b ∈ Zq respectively can let a
third server learn c = a+bwithout revealing a, b as follows.

1. U0 picks 〈a〉0 ∈ Zq uniformly at random.

2. U0 then sends 〈a〉1 = a− 〈a〉0 to U1.

3. U1 also uniformly samples 〈b〉0 ∈ Zq and sends it to U0.

4. U1 keeps 〈b〉1 = b− 〈b〉0 privately.

5. U0 computes 〈c〉0 = 〈a〉0 + 〈b〉0.

6. U1 computes 〈c〉1 = 〈a〉1 + 〈b〉1.

U0 and U1 now hold shares of c = 〈c〉0 + 〈c〉1 = a+ b.

Useful Subroutines: Rand(rx) is a pseudorandom function
that takes a random seed rx and outputs a random x′ ∈ Zq

for one-time-padding x. We also define Geni(rx, x) :=
(−1)i·Rand(rx)+i·x for i ∈ {0, 1}. We let Ui for i ∈ {0, 1}
hold either Rand(rx) or x− Rand(rx) as a share of x.

Beaver’s protocol (Beaver 1991) lets U0 with 〈a〉0, 〈b〉0 and
U1 with 〈a〉1, 〈b〉1 compute secret shares of c = ab.

1. We suppose U0 and U1 have precomputed in an offline
stage additive secret shares of u, v, and z where u · v = z,
i.e., Ui has (〈u〉i, 〈v〉i, 〈z〉i) as a Beaver’s triplet.

2. Ui computes 〈e〉i = 〈a〉i − 〈u〉i and 〈f〉i = 〈b〉i − 〈v〉i.
3. They then exchange 〈e〉i and 〈f〉i to reconstruct e and f ,

masking a and b respectively: e = a− u and f = b− v.

4. Finally, with e and f , they compute 〈c〉i = −i(e · f)+ f ·
〈a〉i + e · 〈b〉i + 〈z〉i locally, where 〈c〉0 + 〈c〉1 = ab.

Using this protocol as-is requires two rounds of communi-
cation (for recovering (e, f)) and precomputation (of shares
of (u, v, z)). Also, the input/output is in secret shares, while
we can afford to let the enclaves (securely) store the in-
put/output directly. Our protocol aims to reduce communi-
cation and precomputation costs, improving the throughput.

The Design of Goten
The System Setting and Assumptions
Goten uses three non-colluding servers S0, S1, and S2. They
interact for privacy-preserving computation conforming to
the specification of our protocol (as the code integrity can
be ensured by TEE). They hold secret shares of the training
data, model parameters, and intermediate values. The values
hidden by the secret shares are not recoverable by any single
one of them. These non-colluding servers can be complet-
ing cloud service providers or prestigious institutions. If we
want to only use 2 servers, we can replace S2 with an offline
preparation phase (see the description of our protocol).

Servers S0 and S1 are equipped with TEE-enabled CPUs
(e.g., Intel SGX) to instantiate trusted enclaves E0 and E1,
respectively. In our protocol (Figure 2), we use U to denote
an untrusted GPU of a server, which interacts with the TEEs.

Overall Workflow
Goten uses enclaves to perform most of the computation, ex-
cept for linear layers. Enclaves guarantee the correctness and
confidentiality of the computation, but their performance is
worse than GPU’s, especially for (linear) matrix multiplica-
tion and convolution. We thus devise a secure protocol that
outsources the linear layers to GPU for efficiency.

Once the data goes out of the enclaves, it is in an untrusted
zone. The host can read it, and the TEEs no longer ensures
its privacy. So we need to take extra steps to protect the data
dispatched to GPUs. The extra data transfer between servers
and between CPU and GPU may slow down the outsourcing
process. Our protocol needs to minimize these costs.

We focus on explaining our training protocol. As in Fig-
ure 1, we have two enclaves E0 and E1, residing in S0 and
S1. During initialization, the enclaves synchronize to make
sure their inputs, in particular, the training data, DNN con-
figurations (e.g., its architecture and hyper-parameters), and
randomness (derived via seeds ru, rv, ra, rb, rz in Figure 2,
which can be easily established by a key-exchange proto-
col) are the same. The training data providers attest both en-
claves (a basic TEE feature) for having loaded in the right
program code and specification. Upon confirming their in-
tegrity, the data provider establishes secure channels with
them and sends training data to either one of the enclaves.

Both enclaves run the (stochastic) gradient descent train-
ing algorithm. They sample the same training batch, take al-
most identical steps (except in linear layers) for forward and
backward propagation, update the model parameters accord-
ing to the gradient, and repeat these steps until meeting the
pre-defined stop criteria. Both enclaves run alike steps with
the same randomness, so many of their “helper values” are
the same. This trick helps minimize the communication cost
and round of our GPU-outsourcing protocol.

For inference, Goten simply performs a forward propa-
gation and returns the output layer’s result to the querier,
without the backward propagation and repeated iterations.

Secure GPU-Outsourcing Protocol
A linear layer basically performs linear operation ⊗ on two
tensors a and b, and outputs the resulting tensor c = a ⊗ b.



Init Input
Layer

Linear
Layer

Non-
Linear
Layers

Output
Layer

Input
Layer

Update
Model Params

Sample
Mini-Batch

S0
GPU

S1
GPU

S2
GPU

Secure
Outsourcing

Init Input
Layer

Linear
Layer

Non-
Linear
Layers

Sample
Mini-Batch

Sync

En
cl

av
e 

E 0
U

nt
ru

st
ed

Zo
ne

Loss
Value

Output
Layer

Input
Layer

Update
Model Params

Loss
Value

Forward Propagation Backward Propagation

Linear
Layer

S0
GPU

S1
GPU

S2
GPU

Secure
Outsourcing

Linear
Layer

En
cl

av
e 

E 1

Figure 1: Overview of Goten: Crypto-Aware Private Training by Servers S0, S1, and S2 using Secure GPU-Outsourcing Protocol

Our Secure GPU-Outsourcing Protocol for c = a⊗ b
1 : U2 : u← Rand(ru), v ← Rand(rv)
2 : U2 → E0,E1 : z = u⊗ v

3 : for i = 0, 1 (in parallel)
4 : Ei → Ui : 〈a〉i ← Geni(ra, a), 〈b〉i ← Geni(rb, b),

5 : e = a− Rand(ru), f = b− Rand(rv)
6 : Ui → E0,E1 : ci = 〈a〉i ⊗ f + e⊗ 〈b〉i − i · e⊗ f

7 : endfor

8 : E0,E1 : c = z + c0 + c1
∗{ra, rb, ru, rv} are the pre-agreed random seeds of E0, E1

Figure 2: Outsourcing Computation of a⊗ b to the GPUs

TEEs E0,E1 resided in servers S0 and S1 outsource a and b
to the GPUs within S0 and S1 for computing c = a⊗ b with
better performance. Different from the typical two/multi-
server computation model, which processes inputs in share
(〈a〉i, 〈b〉i) and ends up with 〈c〉i, we load (a, b) as-is to the
enclaves, which obtain c as-is as the result.

Figure 2 describes our protocol for outsourcing linear op-
eration of a ⊗ b. GPU U2 of S2 generates a random Beaver
triplet (u, v, z), where z = u⊗ v, and sends z to E0 and E1.
All instances of “→ Ei : var” in Figure 2 refer to loading
the variable(s) var to Ei. This explains Line 2 (and Line 6).
E0 and E1 then create additive shares of a and b, and their

masked values e (a masked by u) and f (b masked by v).
U0 gets (〈a〉0, 〈b〉0, e, f) and U1 gets (〈a〉1, 〈b〉1, e, f). After
the GPUs locally carried out linear computations over these
values, the results are returned to E0 and E1 (Line 6) for
them to recover the computation result by also using z.
Correctness. Our protocol reconstructs c by z + c0 + c1 at
the last line of Figure 2. By z+c0+c1 = u⊗v+

∑1
i=0〈a〉i⊗

f +e⊗〈b〉i− i ·e⊗f = u⊗v+a⊗ (b−v)+(a−u)⊗ b−
(a− u)⊗ (b− v) and the linearity of ⊗, we have c = a⊗ b.
Reduced Computation and Communication Cost. In
the original Beaver’s protocol, the shares (〈a〉0, 〈b〉0) and
(〈a〉1, 〈b〉1) from parties U0 and U1 must be masked inde-
pendently by the corresponding one-time pads (〈u〉0, 〈v〉0)

and (〈u〉1, 〈v〉1). They also need to interact to recover (e, f).
Our protocol aims to compute a ⊗ b by operating over

(e, f), a masked version of (a, b). Enclaves E0 and E1 use
the same seeds (ru and rv) to derive u and v. Both of them
know a and b, so they can obtain e and f without any inter-
action. This saves half of the pre/post-processing and com-
munication costs and makes e and f no longer dependent on
〈a〉i and 〈b〉i. E0 and E1 thus can run the steps in Figure 2 in
parallel. Also, E0 and E1 no longer need to interact until they
reconstruct the result c. We then further reduce the run-time
of such pre-processing to roughly 1/4 of the original.

Table 1 compares the communication cost of the origi-
nal Beaver’s protocol and ours. In both, the task of the third
server U2 is to provide the secret shares of u, v, z to U0 and
U1. Let sa, sb, and sc be the size of a, b, and c. Our protocol
reduces communication costs by roughly 75% and reduces
the round of communication to 2.
Larger Batch Size for Higher Training Throughput.
When the batch size increases, the number of inputs in each
layer also increases. More data can be dispatched to the GPU
or other servers at the same time to amortize the commu-
nication latency. Meanwhile, a large batch size can better
utilize GPU’s batch processing power, leading to a higher
GPU/CPU speedup ratio. Nevertheless, if the batch size is
too large, the intermediate elements may exceed the mem-
ory limit of GPU. For the best performance, one should pick
the largest possible batch size within such a limit.
Removing S2. Apart from “fully” utilizing the enclaves to
do what they are good for, we also choose to “fully” lever-
age the non-colluding assumption (needed by the original
protocol (Beaver 1991)) with one more server S2 to estab-
lish the triplets {〈u〉i, 〈v〉i, 〈z〉i} where u ⊗ v = z. If one
wants to remove S2, the preparation of (u, v, z) can be done
by E0 and E1 themselves or a group of triplet providers (not
necessarily with GPUs) in an offline phase. They can be pre-
pared in parallel as triplets are independent. Our protocol in
Figure 2 can be slightly adapted. (Details in the full version.)

(De-)Quantization
Quantization for Secure Computation. Our protocol per-
forms linear operations over fixed-point numbers in Zq ,
while common neural networks operate over floating-point



Server Beaver’s Protocol Goten

Size
S0 3(sa + sb) + 2sc 2sa
S1 3(sa + sb) + 2sc 2sb
S2 2(sa + sb + sc) 2sc

Round
S0 3 2
S1 3 2
S2 2 2

Table 1: Communication-Cost Comparison with Beaver’s

Input &
Model Params Quantize De-Quant.Mask OutputUnmask

Secure GPU-
Outsourcing

GPU0

GPU1

GPU2

E0

Input &
Model Params Quantize De-Quant.Mask OutputUnmaskE1

Figure 3: Dynamic (De-)Quantization + Secure Outsourcing

numbers (“floats”). To ensure Goten can train common neu-
ral networks, we quantize the inputs of linear layers and de-
quantize their outputs as in Figure 3. So the fixed-point re-
quirement only affects linear layers but not the rest of neural
networks, e.g., non-linear computation or model parameters
update with gradient, hence attaining higher accuracy.

Formally, we approximate a floating-point linear opera-
tion x ⊗f w by a fixed-point linear operation ⊗Zq that only
takes Zq elements as inputs (and outputs), and we need a
quantization scheme to convert floats to Zq and vice versa.
We first quantize x and w into xQ = Q(x; θx) and wQ =
Q(w; θw) with quantization parameters θx and θw. We then
use fixed-point multiplication⊗Zq

to compute yQ = xQ⊗Zq

wQ, and derive the result by y = Q−1(yQ; θx, θw) ≈ x⊗fw.

The Constraints of GPU. Off-the-shelf optimized libraries
for GPU do not support integer modular arithmetic. To work
on Zq integers, we put them as 64-bit double-precision floats
as Slalom (Tramèr and Boneh 2019). This leaves us only 53
significant bits plus a sign bit to represent the integers in
linear layers (the rest of (64− 53− 1) exponent bits are 0).

Such a bitwidth harshly restricts input data’s magnitude.
To ensure the matrix multiplication or tensor convolution
a ⊗ b does not overflow, we need q2k < 253, where k is
the number of addition needed to compute an entry in the
resulting tensor, e.g., the number of columns of matrix a in
matrix multiplication. We also need to prevent overflow in
Zq since ⊗ not only operates over the secret shares but also
the value hidden within. Suppose the magnitude of the input
values is bounded by p; we further require p2k < q. Com-
bining both requirements above, we have p4k3 < 253.

Putting it in hardware terms, each input values theoreti-
cally can be of∼13 bits because log2 p < 53/4 when k = 1.
However, we need some safety margin for k as it may be up
to thousands. In view of such severe constraints, we should
pick a quantization scheme that keeps p as little as possible
while the quantization error is small enough for training.

Challenges in Dynamic Quantization. In prediction, the
model is fixed. Slalom thus knows the value distribution of
model parameters for deriving the distributions of the input,
output, and intermediate values. Picking a static scaling pa-
rameter that minimizes the prediction error is thus relatively
easy: Q(·; θ) is always parameterized by θ = 28. Slalom
states that quantization for training is challenging since the
range of gradient of the weight may change, so do the in-
put and output of the successive layers. Knowing the value
distribution prior to training is hard. We do not know be-
forehand what the quantization parameters should be.

Beyond what Slalom did, we need dynamic quantization
for training, meaning that it can adapt the change on the dis-
tribution of the model parameters, and hence the intermedi-
ate value and gradient. The (de-)quantization process also
has to be efficient to avoid being the bottleneck that may
cancel out the performance gain from GPU-outsourcing.

Dynamic Quantization for Training
SWALP (Yang et al. 2019) is a scheme that employs stochas-
tic weight averaging for training in a low-precision (or low-
bitwidth) setting. The forward and backward computations
of linear layers are performed in low-bitwidth fixed-point,
but the weights are stored and updated in floats with high-
bitwidth. Let bit be the number of bits available for low-
bitwidth computations (defaults to 8). For input and weight,
SWALP finds out the maximum absolute value and calcu-
lates its exponent in the format of bits, i.e., compute exp =
b(log2 ◦max ◦ abs)(data)c. Then, it rescales all the values
by 2exp so that the new maximum values are roughly aligned
to 2bit−1, rounds them up stochastically (Gupta et al. 2015),
and clips all the values to [−2bit−1, 2bit−1], i.e., dataQ =
Q(data, exp) = clip(bdata · 2−exp+bit−2e), where clip(a) =
min(max(a,−2bit−1), 2bit−1). After computation, the re-
sults are scaled-down via y = yQ · 2expx+expw−2·bit+4.

SWALP dynamically quantizes depending the sampled
maximum values of the weight and input in every iteration.
Finding the maximum absolute value and scaling up and
down the values requires only 3 linear scans. The scaling
can be fused with other pre/post-processing too. From the
existing SWALP experiment, its accuracy drops by less than
1pp when compared to training in full-precision for VGG11,
and the operands are only 8 bits. By adopting SWALP, Goten
can train VGG11 with high accuracy as we will see.

Our Memory-aware Mechanism
Computations in linear layers and any necessary pre/post-
processing could suffer from paging overheads. As reported
by SCONE2, memory access can be 10−1000× slower than
the plaintext setting. Eleos (Orenbach et al. 2017) explains
that triggering native paging would exit the enclave mode,
which is time-consuming. Cosmix (Orenbach et al. 2019)
can mitigate these issues, but integrating it with a DNN
framework is non-trivial. Our memory-aware measures let

2SCONE is a Secure CONtainer Environment (Arnautov et al.
2016) that allows developers to directly run applications in an SGX
enclave with almost no code change. TensorSCONE (Kunkel et al.
2019), which is not open source, used it to run TensorFlow.



the enclave specifies the piece of memory to be used and
handles most operations in the enclave to minimize paging.

When Goten needs to allocate more memory than SGX’s
memory limit, it stays in the enclave mode, directly encrypts
the chunk of memory, and evicts it to the untrusted zone.
When it needs the data outside the enclave, it loads the chunk
of memory into the enclave for decryption. For operations in
the enclave, we aim to minimize the memory access across
the border of the trusted/untrusted zone. In particular, we
fuse together operations that use the same set of memory,
and independently handle batches in non-linear layers.

Empirical Evaluation
For Goten, its SGX part is written in C++ and com-
piled with Intel SGX SDK 2.6. All C++ code is com-
piled by GCC 7.5, with flag -march=native to avoid
data-dependent branching. We use PyTorch 1.2 on Python
3.6.9 to marshal network communication and operation on
GPU, which runs with CUDA 9.0. We reuse some code
of Slalom (Tramèr and Boneh 2019), including their code
of cryptographically-secure random number generation and
encryption/decryption, and their OS-call-free version of the
linear algebra library Eigen. All experiments were con-
ducted at least 5 times, and we report the average result. The
deviations of our running times from the average are <10%.

We record the timing figures for network communication
and GPU computation separately on 3 Google Cloud VMs,
each equipped with 32GB RAM and an Nvidia V100 GPU.
These machines can communicate at 8Gbps with less than
5ms latency. Unfortunately, all CPUs on Google VMs do not
support SGX hardware mode. We thus run Goten in the sim-
ulation mode (which skips the data protection). This suffices
for timing communication and GPU computation.

For the timing figures affected by the simulation mode,
they are replaced by the figures produced from our desktop
computer using the SGX hardware mode (with all the pro-
tection of SGX). The desktop is equipped with Intel i7-7700
Kaby Lake Quad-cores 4.3GHz CPU and 16GB RAM, us-
ing Ubuntu 18.04. We use it to run all non-linear layers and
the pre/post-processing for linear layers (generating additive
masks, recovering the secret, and moving data to/from the
unprotected memory zone). These are all operations affected
by the difference between hardware and simulation modes.
We also evaluate our baseline without GPU on this machine.
Our Baseline: CaffeeScone. We combine SCONE with
Caffe (Jia et al. 2014), an open-source DNN framework,
to build our baseline privacy-preserving DNN framework –
CaffeScone. CaffeScone does not use GPU or non-colluding
servers. Beyond showing what one can get by applying
a generic solution (SCONE) that uses SGX for training
(not supported by Slalom (Tramèr and Boneh 2019)), our
CaffeScone implementation enables more benchmarking for
insight in improvements, which are eventually achieved by
our main result (hence further optimizing it is not our goal).
Experiment Overview. We evaluate Goten and CaffeScone
on CIFAR-10 (Krizhevsky and Hinton 2009), an image
classification dataset commonly used for accuracy bench-
mark (Tramèr and Boneh 2019; Ng and Chow 2021). It con-

Framework GPU / TEE TP Speedup
Falcon 7/ 7 1482 132.64×
CaffeScone 7/ 3 28800 6.84×
Goten 3/ 3 196733 -

Table 2: Training Throughput (TP: images/hr) on CIFAR-10

tains 60000 32× 32 3-color-channel images divided into 10
classes, 50000 of them are for training, and the rest is for
testing. Good performance on this benchmark means that the
neural networks are likely to work also well on other visual
applications, e.g., prohibitive image detection.

We pick VGG architecture with 11 layers and batch nor-
malization layers as a typical DNN that can attain a high ac-
curacy on CIFAR-10 but small enough to fit with (the mem-
ory limit of) CaffeScone. For Goten, we also use VGG-11.

Our experiments aim to answer the following questions:
• Can Goten beat the state-of-the-art training framework?
• What is the training throughput of Goten? How much do

we gain? Goten processes linear and non-linear layers dif-
ferently. What are the corresponding performance gains?

• Since adopting SWALP may change the training conver-
gence speed, by how much the GPU-outsourcing proto-
col and SWALP as a whole can improve the training effi-
ciency for attaining a particular testing accuracy?

• What is the performance of Goten for sensitive tasks,
says, medical diagnosis over images?

• As network conditions between the servers are critical for
the training efficiency, how does the training speed vary
with the bandwidth? Also, what is the minimum band-
width for Goten to perform better than CaffeScone?

Comparison with the State of the Art. Table 2 shows
our speedup over Falcon (Wagh et al. 2021), which has the
prior best performance on training throughput on CIFAR-10
under the LAN setting. Falcon adopts VGG-16, a slightly
larger neural network, whose computational cost is at most
a double of VGG-11. It did not provide any accuracy figures.
Training Throughput. We compare Goten’s training
throughput (the batch size divided by the processing time
for each batch) with CaffeScone, our baseline approach.

Goten uses both TEE and GPU, while CaffeScone only
uses TEE. Naturally, the memory limit would be different.
As explained earlier, for maximizing their performance, we
pick the largest possible batch size that fits the memory. For
our experiment setting of GPU with 16GB, we pick 512
as the batch size for Goten. For CaffeScone, the memory
limit of the SGX enclave is only 90MB; it attains its highest
throughput with the batch size of 128 and 2 CPU cores (as
confirmed by our experiment detailed in the full version).

Table 3 shows the speedup of Goten over CaffeScone in
terms of training throughput. For linear layers, it is 6.17×.
For non-linear layers, the speedup is largely due to our mem-
ory handling as non-linear computation is not outsourced
(and VGG-11 is large enough to trigger the memory pag-
ing, done by the Linux system in our experiment), which is
8.02×. In total, Goten outplays CaffeScone by 6.84×.



Framework (Batch size) Linear Non-Linear Total
CaffeScone (128/batch) 9243 6774 16017
Goten (512/batch) 5990 3378 9368
Speedup on Throughput (×) 6.17 8.02 6.84

Table 3: Time (in ms) and Throughput of Different Layers

Accuracy 85% 86% 87% 88% 89% 90%
Speedup (×) 10.82 6.71 6.71 6.69 4.93 -

Table 4: Accuracy vs. Speedup using Goten over CaffeScone

0 20 40 60 80 100 120 140 160

Running time (hours)

0.6

0.7

0.8

0.9

T
es

t
A

cc
u

ra
cy

CaffeScone (Batch Size = 128)

Goten (Batch Size = 512)

Figure 4: Convergence Time of VGG-11 over CIFAR-10

Accuracy 81% 82% 83% 84% 85% 86%
Speedup (×) 8.53 13.67 4.27 6.33 3.42 7.28

Time (minute) 1.25 1.56 13.1 16.9 31.2 46.8

Table 5: Training Time and Speedup on VGG-11 over IDC

Convergence on Quantized NN. CaffeScone’s training is
done over single-precision floats, while Goten uses SWALP.
They both ran stochastic gradient descent with momentum
of 0.9, weight decay of 5·10−4, and learning rate of 0.5.
The learning rate was halved every 30 epochs. Goten, with
quantization, may take more steps to attain a particular accu-
racy than CaffeScone, leading to longer training time despite
higher training throughput. To dispel the doubt, we record
the convergence time of both captured on GPU and rescale
the time axis according to Table 3’s timing. Figure 4 demon-
strates how the speedup leads to a higher convergence rate,
by which we confirmed that Goten converges much faster.
Also, Goten can attain 89% accuracy within 40 hours.

Table 4 shows that our quantization attains a high accu-
racy in a shorter time. Notably, Goten reaches 85% accuracy
10.8× faster than CaffeScone. However, Goten cannot attain
90% accuracy within 200 epochs, but CaffeScone can.
Sensitive Training Tasks. To showcase Goten’s ability in
deep learning over sensitive data, we train with VGG-11 on
a public dataset (Cruz-Roa et al. 2014) consists of images
of women’s breast tissue, which can be used to detect in-
vasive ductal carcinoma (IDC), the most common type of
breast cancer. We trained over pre-processed (Janowczyk
and Madabhushi 2016) images. As shown in Table 5, Goten
attains 82% accuracy in 94s, 13.6× faster than training
using CaffeScone. For 86% accuracy, Goten takes 46.8
mins, 6.4× faster than CaffeScone. Notably, the original
works (Janowczyk and Madabhushi 2016) attained only
84% accuracy with AlexNet, which is smaller than VGG-11.

102 103 104

Bandwidth (Mbps)

0

2

4

6

8

S
p

ee
d

u
p

R
at

io

Overall

Linear Layers Only

Figure 5: Speedup Ratio vs. Bandwidth (megabit/second)

Speedup Ratio in Different Network Settings. The servers
need to send the shares of resulting tensors to other servers
for the enclaves to reconstruct the results. To investigate
Goten’s performance under various network settings and fig-
ure out the minimum bandwidth for performance gain over
CaffeScone, we record the runtime of each operation in lin-
ear layers, single out the communication delay, and recalcu-
late it with respect to other bandwidth settings.

Figure 5 shows the speedup ratio according to differ-
ent bandwidth with a fixed latency3 of 20ms. We skip the
speedup ratio of non-linear layers because it is independent
of the network performance. To prevent performance degra-
dation, the minimum bandwidth is 100Mbps; and the per-
formance gain saturates around 10Gbps for 8× speedup. We
expect that companies joining forces to perform training are
motivated to dedicate a better network line between them.
Using only 2 Servers. As described earlier, We can remove
S2 by shifting its preparation job to the other two enclaves
during the offline phase. We estimate the offline throughput
by recording the time of running the linear layers solely in
CaffeScone. Each of E0 and E1 spawns 2 CaffeScone in-
stances, totaling 4 instances. We pick a batch size of 512 as
used by Goten and assign each instance 2 threads.

Albeit the offline computation relies solely on CPU, par-
allelization on enclaves can cancel the disadvantage. More-
over, the tasks in S2 are less intensive. In the end, the of-
fline throughput is just slightly higher (1.03×) than the on-
line throughput. The training parties can thus avoid using the
third server at the price of doubling the runtime.

Conclusion
We proposed Goten, with a secure outsourcing protocol
leveraging the best of TEE and GPU, memory-aware mea-
sures to mitigate the paging overheads, and careful treat-
ments in data type to ensure efficiency yet avoiding overflow.

Goten uses a dynamic quantization scheme to cater to
the fluctuation in the weight during training, and it signifi-
cantly outperforms the state-of-the-art purely cryptographic
approaches. Devising cryptographic protocols that leverage
GPU is an ongoing research topic (Ng and Chow 2021). We
would like to call for (collaboration in) future works towards
making GPU-enhanced approaches more widely applicable,
e.g., by experimenting with “real-world” sensitive data.

3The latency of geometrically-close US servers of Google VM
(e.g., ∼12ms between us-east1 and us-east4) can be found at
https://docs.aviatrix.com/HowTos/gcp inter region latency.html



Acknowledgements
Sherman Chow is supported by the Research Grant Council,
University Grants Committee, Hong Kong under the Gen-
eral Research Fund (CUHK 14210319).

The CUHK authors would also like to thank ASM Pacific
Technology Ltd, Department of Information Engineering,
and Faculty of Engineering at CUHK for their awards sup-
porting related undergraduate summer/final-year projects.
We also thank Chen Change Loy for his early suggestions.

This research is supported by the National Research
Foundation, Singapore under its Strategic Capability Re-
search Centres Funding Initiative. Any opinions, findings
and conclusions or recommendations expressed in this ma-
terial are those of the authors and do not reflect the views of
National Research Foundation, Singapore. Part of the work
was done while the last author was with CUHK.

This work has been presented as invited talks in the Sev-
enth International Workshop on Security in Cloud Comput-
ing4 (Chow 2019), held in conjunction with the Fourteenth
ACM Asia Conference on Computer and Communications
Security, and 2020 CUHK Conference on Financial Tech-
nology: “How FinTech Transforms Organizations – Theory
& Practice.”5 We thank the respective organizers for their in-
terests, and the audiences for their questions and comments.

Finally, our thanks go to the anonymous reviewers.

References
Arnautov, S.; Trach, B.; Gregor, F.; Knauth, T.; Martin, A.;
Priebe, C.; Lind, J.; Muthukumaran, D.; O’Keeffe, D.; Still-
well, M.; Goltzsche, D.; Eyers, D. M.; Kapitza, R.; Pietzuch,
P. R.; and Fetzer, C. 2016. SCONE: Secure Linux Contain-
ers with Intel SGX. In OSDI, 689–703. USENIX Assoc.
Beaver, D. 1991. Efficient Multiparty Protocols Using Cir-
cuit Randomization. In CRYPTO, 420–432. Springer.
Chandran, N.; Gupta, D.; Rastogi, A.; Sharma, R.; and Tri-
pathi, S. 2019. EzPC: Programmable and Efficient Se-
cure Two-Party Computation for Machine Learning. In Eu-
roS&P, 496–511. IEEE.
Chaudhari, H.; Rachuri, R.; and Suresh, A. 2020. Trident:
Efficient 4PC Framework for Privacy Preserving Machine
Learning. In NDSS. Internet Society.
Chow, S. S. M. 2019. Can We Securely Outsource Big Data
Analytics with Lightweight Cryptography? In Security in
Cloud Computing (SCC), co-located with AsiaCCS, 1–1. In-
vited paper for keynote talk.
Cruz-Roa, A.; Basavanhally, A.; González, F. A.; Gilmore,
H.; Feldman, M. D.; Ganesan, S.; Shih, N.; Tomaszewski, J.;
and Madabhushi, A. 2014. Automatic detection of invasive
ductal carcinoma in whole slide images with convolutional
neural networks. In Medical Imaging: Digital Pathology,
volume 9041, 904103. SPIE.
Gupta, S.; Agrawal, A.; Gopalakrishnan, K.; and Narayanan,
P. 2015. Deep Learning with Limited Numerical Precision.
In ICML, 1737–1746. JMLR.org.

4https://conference.cs.cityu.edu.hk/asiaccsscc/19
5http://www.cfe.cuhk.edu.hk/ftc2020

Hynes, N.; Cheng, R.; and Song, D. 2018. Efficient deep
learning on multi-source private data. arXiv:1807.06689.
Janowczyk, A.; and Madabhushi, A. 2016. Deep learning for
digital pathology image analysis: A comprehensive tutorial
with selected use cases. Journal of Pathology Informatics 7.
Jia, Y. 2014. Learning Semantic Image Representations at a
Large Scale. Ph.D. thesis, UC Berkeley, USA.
Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.;
Girshick, R. B.; Guadarrama, S.; and Darrell, T. 2014. Caffe:
Convolutional Architecture for Fast Feature Embedding. In
Multimedia (MM), 675–678. ACM.
Krizhevsky, A.; and Hinton, G. 2009. Learning multiple lay-
ers of features from tiny images. Tech Report.
Kunkel, R.; Quoc, D. L.; Gregor, F.; Arnautov, S.; Bhatotia,
P.; and Fetzer, C. 2019. TensorSCONE: A Secure Tensor-
Flow Framework using Intel SGX. CoRR abs/1902.04413.
Ma, J. P. K.; Tai, R. K. H.; Zhao, Y.; and Chow, S. S. M.
2021. Let’s Stride Blindfolded in a Forest: Sublinear Multi-
Client Decision Trees Evaluation. In NDSS. Internet Society.

Mohassel, P.; and Rindal, P. 2018. ABY3: A Mixed Protocol
Framework for Machine Learning. In CCS, 35–52. ACM.
Ng, L. K. L.; and Chow, S. S. M. 2021. GForce: GPU-
Friendly Oblivious and Rapid Neural Network Inference. In
USENIX Security. USENIX Association. To appear.
Orenbach, M.; Lifshits, P.; Minkin, M.; and Silberstein, M.
2017. Eleos: ExitLess OS Services for SGX Enclaves. In
EuroSys, 238–253. ACM.
Orenbach, M.; Michalevsky, Y.; Fetzer, C.; and Silberstein,
M. 2019. CoSMIX: A Compiler-based System for Secure
Memory Instrumentation and Execution in Enclaves. In
USENIX ATC, 555–570. USENIX Association.
Shaon, F.; Kantarcioglu, M.; Lin, Z.; and Khan, L. 2017.
SGX-BigMatrix: A Practical Encrypted Data Analytic
Framework With Trusted Processors. In CCS, 1211–1228.
ACM.
Tai, R. K. H.; Ma, J. P. K.; Zhao, Y.; and Chow, S. S. M.
2017. Privacy-Preserving Decision Trees Evaluation via
Linear Functions. In ESORICS Part (II), 494–512. Springer.
Tramèr, F.; and Boneh, D. 2019. Slalom: Fast, Verifiable and
Private Execution of Neural Networks in Trusted Hardware.
In ICLR.
Wagh, S.; Tople, S.; Benhamouda, F.; Kushilevitz, E.; Mit-
tal, P.; and Rabin, T. 2021. FALCON: Honest-Majority
Maliciously Secure Framework for Private Deep Learning.
PoPETs 2021(1): 188–208.
Wong, H. W. H.; Ma, J. P. K.; Wong, D. P. H.; Ng, L. K. L.;
and Chow, S. S. M. 2020. Learning Model with Error - Ex-
posing the Hidden Model of BAYHENN. In IJCAI, 3529–
3535.
Yang, G.; Zhang, T.; Kirichenko, P.; Bai, J.; Wilson, A. G.;
and Sa, C. D. 2019. SWALP : Stochastic Weight Averaging
in Low Precision Training. In ICML, 7015–7024. PMLR.


