
Goten: GPU-Outsourcing
Trusted Execution of Neural Network Training

Lucien K. L. Ng, Sherman S. M. Chow, Anna P. Y. Woo,
Donald P. H. Wong (CUHK), and Yongjun Zhao (CUHKàNTU)

Department of Information Engineering
Chinese University of Hong Kong (CUHK), Hong Kong

§ Sensitive
§ Medical Image analysis, Child Exploitation Imagery, etc.
§ Privacy laws & Regulations, e.g., GDPR

§Massive
§ Hardly any single entity’s data is sufficient

§ Private Training
§ No one should learn anything about the model & other’s data

Training data for Neural Network

Goten 2

§ Federated Learning:
§ Each data contributor train DNN locally
§ They exchange the DNN’s weight frequently

§ Problems:
§ Every contributor can use the DNN

§ No rate-limiting, even for non-agreed/illegal uses
§ Contributors may steal others’ data

§ Model Inversion Attack[Fredrikson et al.]

§ Noisy/Implicit data ⌦ Data privacy

Isn’t it solved by Federated Learning?

3
Matt Fredrikson, Somesh Jha, Thomas Ristenpart.
Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures.
ACM Conference on Computer and Communications Security (CCS) 2015.

Image Credit: Vaikkunth Mugunthan

xkcd.com/2169

§ Falcon from PETS ’21
😁 premier venue for research in Privacy-Enhancing Technologies
😁 (our upcoming paper presents a better scheme for inference)

§Use non-colluding servers for private training
☹ Take 5+ weeks to train VGG-16 for CIFAR-10

State-of-the-Art Crypto Approach

Goten 4

Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz, Prateek Mittal, and Tal Rabin.
Falcon: Honest-Majority Maliciously Secure Framework for Private Deep Learning

§ Slalom is assisted by hardware: Intel SGX & GPU
😁 Free from heavyweight cryptographic tools
☹ But it only supports private inference

§ Inference is easier than training (esp. for crypto-processing)
☹ No model privacy

§ the server knows the plaintext model
§ no outsourcing of inference service

H/W-assisted Approach: Slalom (ICLR’19)

Goten 5

remains oblivious
to query

learn nothing
about the modelFlorian Tramèr, Dan Boneh

Slalom: Fast, verifiable and private execution of neural networks in trusted hardware

§e.g., Intel SGX

😁 protect the data’s privacy inside
§ even the machine owner cannot read it

😁 processes data efficiently as plaintext on CPU

☹ still works in CPU
§ too slow for batched linear operations

TEE: Trusted Execution Environment

Goten 6

😁 GPU can speed up the linear layers in DNNs
§ the linear layers is the most time-consuming part in DNNs

☹ GPU does not have TEE
§ lack of data privacy & model privacy!

GPU: Graphics Processing Unit

Goten 7

§GPU + TEE è Private Training

§ Slalom’s approach, and why it fails for training
§Goten

§ System Overview: Non-colluding servers
§ Core Technique: Additive secret sharing
§ (Dynamic) Quantization
§ Quick Discussion of Our Experimental Results

Rundown

Goten 8

§GPU + TEE è Private Training

§ Slalom’s approach, and why it fails for training
§Goten

§ System Overview: Non-colluding servers
§ Core Technique: Additive secret sharing
§ (Dynamic) Quantization
§ Quick Discussion of Our Experimental Results

Rundown

Goten 9

§ Treat linear layers and non-linear layers differently
§ non-linear layers: e.g., ReLU, Maxpool
§ linear layers: e.g., Convolution, Matrix Multiplication

Slalom’s Approach

Goten 10

Linear
Layers

Non-Linear
Layers OutputQuery Linear

Layers

§Operation of a Linear Layer: y = W ⊗ x
§ y: output, x: inputs, and W: weight (e.g., kernel in a conv. layer)

Slalom’s Linear Layers (and its two problems)

Goten 11

yr = W ⊗ r

Offline Preparation
(Before the query arrives) Randomly

drawn

x’ = x - r (mod q)
x’

yu = W ⊗ x’
yu

y = yu + yr (mod q)

Online Computation
(After the query arrives)

2nd Problem:
The weight is exposed to the GPU
→ Fail to support secure outsourcing
→ Fail to support private training

1st Problem:
⊗ stills run in (slow) CPU
→ Low Throughput
(or lot of pre-computation & storage)

§Contributors send their data to SGX’s TEE/enclaves
§ Securely outsource linear-layer computation to GPUs

§ resided in with 3 non-colluding servers (U0, U1, U2)
§ can reduce to 2 servers (at ½ of the throughput)

§ Train (mostly) non-linear layers in SGX

Goten: GPU + TEE for Private Training

Goten 12

Training
Data

U0

U1

U2

Goten’s Training with GPU-Outsourcing

Goten 13

Linear
Layers

Non-Linear
Layers

Output
Layer

Training
Data

Update
Params

Back-propagateInit

U0

E0

U2

Linear
Layers

Non-Linear
Layers

Training
Data

Update
ParamsInit

E1

U1
Untrusted Zone

Sync
Training data,
Randomness,

NN architecture

Output
Layer

Back-propagate

§ Each server holds a secret-share of the model/data
§ a setting adopted by many existing works (e.g., Falcon)

§ Individual share by itself is totally random/meaningless
§ different from incomplete/partitioned data (e.g., federated learning)

§Candidates:
§ Some of the data contributors

§ More difficult to compromise different parties simultaneously
§ Government: Hospital/Monetary authority

§ If they are deemed trustworthy
§ Independent & Competing Cloud Server Providers

§ If they care their reputation

Non-Colluding Servers

Goten 14

§ Non-colluding servers enable secure linear operation ⊗
§ U0 and U1 hold the additive secret shares (SS) of (W, x)

§ U0 holds <W>0 and <x>0
§ U1 holds <W>1 and <x>1

§ Homomorphism: linear ⊗ can be applied on <W>i and <x>i
§ Privacy: seeing <W>0 (or <W>1) learns nothing about W

§ When computing y = W ⊗ x, nothing exposes to the servers
§ Now we can protect W! (vs. Slalom’s leakage of W to the GPU)

Why Non-Colluding Servers?

Goten 15

§ Privacy (<x>i has no information about x):
§ For each value of x, given <x>i, there exists corresponding <x>1- i

§ (Efficient) Homomorphic operation:
§ <x> + <y> = <x + y>
§ For brevity, we will omit (mod q)

§ (Efficient) Generation:
§ Geni(rx, x) generates xi for i = 0, 1
§ Rand(rx) picks <x>1 uniformly at random from Zq
§ <x>0 = x - <x>1
§ Only 1 random number generation and 1 modular addition

§ (Easily generalizes to a matrix or a tensor)

Secret Sharing x = <x>0 + <x>1 (mod q)

Goten 16

How Goten’s GPU-outsourcing works?

Goten 17

Linear
Layer

Linear
Layer

U2
U1

U0

E1

E0
§High-Level Idea:

§ E0 and E1 send secret secrets of {W, x} to U0, U1
§ U0, U1, and U2 compute over the secret shares
§ E0 and E1 combine the “partial” results of U0, U1, U2

§Goal: Compute y = W⊗ x
§Without leaking any (W, x, y) to (U0, U1, U2)

How Goten’s GPU-outsourcing works?

Goten 18

Linear
Layer

Linear
Layer

U2
U1

U0

E1

E0

u, v
z = u ⊗ vz = u ⊗ v

• Gen0(rx, x) and Gen1(rx, x) are generators for an additive SS of x
• Rand(r) is a secure pseudo-random generator
• {ru, rv, rx, rW} are pre-agreed random seeds (of the generators)

§U2’s bootstrapping:
§ u ← Rand(ru), v ← Rand(rv)
§ z ← u ⊗ v

§Goal: Compute y = W⊗ x
§Without leaking any (W, x, y) to (U0, U1, U2)

How Goten’s GPU-outsourcing works?

19

Linear
Layer

Linear
Layer

U2
U1

U0

E1

E0

u, v

z = u ⊗ v

z = u ⊗ v
• Gen0(rx, x) and Gen1(rx, x) are generators for an additive SS of x
• Rand(r) is a secure pseudo-random generator
• {ru, rv, rx, rW} are pre-agreed random seeds (of the generators)

§U2’s bootstrapping:
§ u ← Rand(ru), v ← Rand(rv)
§ z ← u ⊗ v
§ Send z to E0 and E1

§Goal: Compute y = W⊗ x
§Without leaking any (W, x, y) to (U0, U1, U2)

How Goten’s GPU-outsourcing works?

20

Linear
Layer

Linear
Layer

U2
U1

U0

E1

E0

u, v

z = u ⊗ v

z = u ⊗ v
<x>1, <W>1, e, f

<x>0,<W>0, e, f

• Gen0(rx, x) and Gen1(rx, x) are generators for an additive SS of x
• Rand(r) is a secure pseudo-random generator
• {ru, rv, rx, rW} are pre-agreed random seeds (of the generators)

§ Ei ∈ {0, 1}’s Masking & Dispatch:
§ <W>i ← Geni(rw, W)
§ <x>i ← Geni(rx, x)
§ e = W – Rand(ru) = W – u
§ f = x – Rand(rv) = x – v

§Goal: Compute y = W⊗ x
§Without leaking any (W, x, y) to (U0, U1, U2)

How Goten’s GPU-outsourcing works?

21

Linear
Layer

Linear
Layer

U2
U1

U0

E1

E0

u, v

z = u ⊗ v

z = u ⊗ v

<x>1, <W>1, e, f

<x>0,<W>0, e, f

• Gen0(rx, x) and Gen1(rx, x) are generators for an additive SS of x
• Rand(r) is a secure pseudo-random generator
• {ru, rv, rx, rW} are pre-agreed random seeds (of the generators)

§ Ei ∈ {0, 1}’s Masking & Dispatch:
§ <W>i ← Geni(rw, W)
§ <x>i ← Geni(rx, x)
§ e = W – Rand(ru) = W – u
§ f = x – Rand(rv) = x – v
§ Send {<W>i, <x>i, e, f} to Ui

§Goal: Compute y = W⊗ x
§Without leaking any (W, x, y) to (U0, U1, U2)

How Goten’s GPU-outsourcing works?

22

Linear
Layer

Linear
Layer

U2
U1

U0

E1

E0

u, v
z = u ⊗ vz = u ⊗ v<x>1, <W>1, e, f

<x>0,<W>0, e, f

y1

y0

y1

y0

§Outsourced Computation:
§ U0 computes y0 = <W>0 ⊗ f + e ⊗ <x>0

§ U1 computes y1 = <W>1 ⊗ f + e ⊗ <x>1 – e ⊗ f

§Goal: Compute y = W⊗ x
§Without leaking any (W, x, y) to (U0, U1, U2)

How Goten’s GPU-outsourcing works?

23

Linear
Layer

Linear
Layer

U2
U1

U0

E1

E0

u, v

z = u ⊗ v

z = u ⊗ v

y1

y0 y1

y0

• y0 = <W>0 ⊗ f + e ⊗ <x>
• y1 = <W>1 ⊗ f + e ⊗ <x>1 – e ⊗ f

§Outsourced Computation:
§ U0 computes y0 = <W>0 ⊗ f + e ⊗ <x>0

§ U1 computes y1 = <W>1 ⊗ f + e ⊗ <x>1 – e ⊗ f
§ U0 sends y0 to E0 and E1

§ U1 sends y1 to E0 and E1

§Goal: Compute y = W⊗ x
§Without leaking any (W, x, y) to (U0, U1, U2)

How Goten’s GPU-outsourcing works?

24

Linear
Layer

Linear
Layer

U2
U1

U0

E1

E0

u, v

z = u ⊗ v

z = u ⊗ v

y1

y0 y1

y0

• y0 = <W>0 ⊗ f + e ⊗ <x>
• y1 = <W>1 ⊗ f + e ⊗ <x>1 – e ⊗ f

§ Ei ∈ {0, 1}’s reconstruction of the results:
§ E0 and E1 compute y = y0 + y1 + z

§Goal: Compute y = W⊗ x
§Without leaking any (W, x, y) to (U0, U1, U2)

§ E0 and E1 get y
§ y = y0 + y1 + z

Correctness of the GPU Outsourcing

Goten 25

W

u
e

xv
f

+

+

-

+

W

x

W ⊗ x

§ e = W – u

§ f = x – v

= W ⊗ x
= W ⊗ f + e ⊗ x – e ⊗ f + u ⊗ v
= <W>0 ⊗ f + e ⊗<x>0 + <W>1 ⊗ f + e ⊗<x>1 – e ⊗ f + u ⊗ v

• y0 = <W>0 ⊗ f + e ⊗ <x>
• y1 = <W>1 ⊗ f + e ⊗ <x>1 – e ⊗ f

§ What each non-colluding server sees:
§ U0: <W>0, <x>0, e, f
§ U1: <W>1, <x>1, e, f
§ U2: u, v

§ They are all secret shares or random tensors
§ <W>0/1 and <x>0/1 are secret shares (by definition)
§ e = (W - u) and f = (x - v) are secret shares
§ u and v are random tensors

§ The security only holds over Zq (fixed-point integers)
§ Only then <W>0/1, <x>0/1, e, f are uniformly distributed (over their space)

Security of the GPU Outsourcing

Goten 26

§ (Linear layers’) Outsourcing protocol runs over Zq
§ yQ = WQ ⊗Q xQ mod q (as fixed points)
§ where ⊗Q denotes a linear operation over fixed points

§ But non-linear layers work with floating points
§ They expect yf from linear layers
§ They output xf to linear layers

§We need (de)quantization!
§ WQ = Quan(Wf; θW), xQ = Quan(xf; θx)
§ yf = DeQ(yQ; θW, θx)

Quantization for Secure Outsourcing

Goten 27

Quantization for Secure Outsourcing

Goten 28

xf, Wf

U0

U2

U1

E0 Quan Mask Unmask DeQ yf

xf, Wf
E1 Quan Mask Unmask DeQ yf

§ Slalom (de)quantizes for cryptographic finite field:
§ Static Quantization: xQ = round(xf· 28), wQ = round(wf· 28)
§ Static Dequantization: yf = round(yQ· 2-8)
§ θW and θx are fixed to 28

§ The weight (W) would fluctuate during training
§ A problem explicitly mentioned in Slalom’s paper!
§ When the entries of Wf becomes very small, yQ becomes 0

§ wQ = round(Wf· 28) ≈ 0 → yQ = W Q ⊗Q xQ ≈ 0
§ When the entries Wf becomes very big, yQbecomes trash

§ wQ ≈ round(Wf · 28) > q → overflow
§ Slalom sets q ≈ 224

§ e.g., Wf ≈ 217 → wQ ≈ round(217 · 28) ≈ 225 > q

Yet another problem: Static Quantization

Goten 29

§ The quantization param. (θW, θx) varies with the inputs
§Adapt from SWALP[Yang et al.]

§ a training scheme for low-bitwidth environment
§θw is the magnitude of the maximum values of W

§ θw = ⌊log2 ◦ max ◦ abs(W)⌋
§ θx is also found similarly

§WQ = Quan(Wf; θw) = clip(⌊W· 2-θw+6⌋, -27, 27)
§ xQ is derived similarly
§ yf = yQ · 2θw+θx-12

Goten’s Dynamic Quantization

Goten 30

Guandao Yang, Tianyi Zhang, Polina Kirichenko, Junwen Bai, Andrew Gordon Wilson, Christopher De Sa.
SWALP : Stochastic Weight Averaging in Low-Precision Training.
ICML 2019

§Accuracy drops <1%
§ from our experiments running with VGG-11 over CIFAR-10

§Dynamic quan. allows “proper utilization” of the bitwidth
§ The entries in WQ and xQ would not become 0 or overflow

Dynamic Quantization’s Implications

Goten 31

§ Back-prop. of linear layers are also linear operations
§e.g., fully-connected layers are all matrix multiplications

§ Forward: y = x × WT

§ Backward for W: dW = dyT × x
§ Backward for x: dx = dy × W

How about Back-propagation?

Goten 32

§Goten attains >89% accuracy in 34 hours
§ vs. Falcon’s 5 weeks (accuracy not reported)

§ 132× throughput speed up over Falcon

Performance: Training over CIFAR-10

Goten 33

Framework GPU | TEE NN Architecture Throughput Speedup
Falcon ❌|❌ VGG-16 1482 132×
CaffeScone* ❌|✔ VGG-11 28800 6.84×
Goten ✔|✔ VGG-11 196733 -

(Images/hour)

[*] Our pure-TEE private training framework over Caffe & SCONE (Secure Container Environment)

§ GPU: Nvidia V100 16GB
§ CPU (w/ SGX): Intel i7-7700K
§ Network: Google Cloud (8Gbps & <5ms latency)
§ We run “hybrid” experiments due to resource constraints

§ More details in our paper

§ Showcase application involving sensitive training data
§ IDC: The most common type of breast cancer
§Dataset: Images of women’s breast tissue [Cruz-Roa et al.]

Invasive ductal carcinoma (IDC) detection

Goten 34

Accuracy 81% 82% 83% 84% 85% 86%
Speedup 8.53× 13.7× 4.27× 6.33× 3.42× 7.28×
Time (min) 1.25 1.56 13.1 16.9 31.2 46.8

Cruz-Roa et al.
Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks.
Medical Imaging: Digital Pathology 2014.

§ Large batch size is better for Goten
§ Speedup ratio vs. Bandwidth
§CaffeScone (Our Pure-TEE Solution)’s optimal batch size

§Memory issues of SGX and our mitigation
§How to remove the third server

What we didn’t cover

Goten 35

§A starting point for TEE + GPU private training
§ The Best of Both Worlds

§Our Techniques:
§ Lightweight Crypto for GPU-Outsourcing
§ Dynamic Quantization for Weight Fluctuation during Training

§Code: github.com/goten-team/Goten
§Our Another (Pure-Crypto) Secure Solution

§ “GPU-Friendly Oblivious and Rapid Classification Engine”
§ Conditionally Accepted by Usenix Security 2021

§Contact: {luciengkl, sherman}@ie.cuhk.edu.hk

Closing Remarks

Goten 36

https://github.com/goten-team/Goten

§ “Understand” (悟) the “sky” (天)

Goten

Goten 37

Image Credit: Dragon Ball

