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§ Sensitive
§ Medical Image analysis, Child Exploitation Imagery, etc.
§ Privacy laws & Regulations, e.g., GDPR

§Massive
§ Hardly any single entity’s data is sufficient

§ Private Training
§ No one should learn anything about the model & other’s data

Training data for Neural Network
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§ Federated Learning:
§ Each data contributor train DNN locally
§ They exchange the DNN’s weight frequently

§ Problems:
§ Every contributor can use the DNN

§ No rate-limiting, even for non-agreed/illegal uses
§ Contributors may steal others’ data

§ Model Inversion Attack[Fredrikson et al.]

§ Noisy/Implicit data  ⌦ Data privacy

Isn’t it solved by Federated Learning?

3
Matt Fredrikson, Somesh Jha, Thomas Ristenpart. 
Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures.
ACM Conference on Computer and Communications Security (CCS) 2015.
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§ Falcon from PETS ’21
😁 premier venue for research in Privacy-Enhancing Technologies
😁 (our upcoming paper presents a better scheme for inference)

§Use non-colluding servers for private training
☹ Take 5+ weeks to train VGG-16 for CIFAR-10

State-of-the-Art Crypto Approach
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Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz, Prateek Mittal, and Tal Rabin.
Falcon: Honest-Majority Maliciously Secure Framework for Private Deep Learning



§ Slalom is assisted by hardware: Intel SGX & GPU
😁 Free from heavyweight cryptographic tools
☹ But it only supports private inference

§ Inference is easier than training (esp. for crypto-processing)
☹ No model privacy

§ the server knows the plaintext model
§ no outsourcing of inference service

H/W-assisted Approach: Slalom (ICLR’19)

Goten 5

remains oblivious
to query

learn nothing
about the modelFlorian Tramèr, Dan Boneh

Slalom: Fast, verifiable and private execution of neural networks in trusted hardware



§e.g., Intel SGX

😁 protect the data’s privacy inside
§ even the machine owner cannot read it

😁 processes data efficiently as plaintext on CPU

☹ still works in CPU
§ too slow for batched linear operations

TEE: Trusted Execution Environment 
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😁 GPU can speed up the linear layers in DNNs
§ the linear layers is the most time-consuming part in DNNs

☹ GPU does not have TEE
§ lack of data privacy & model privacy!

GPU: Graphics Processing Unit
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§GPU + TEE è Private Training

§ Slalom’s approach, and why it fails for training
§Goten

§ System Overview: Non-colluding servers
§ Core Technique: Additive secret sharing
§ (Dynamic) Quantization 
§ Quick Discussion of Our Experimental Results

Rundown
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§ Treat linear layers and non-linear layers differently
§ non-linear layers: e.g., ReLU, Maxpool
§ linear layers: e.g., Convolution, Matrix Multiplication

Slalom’s Approach
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§Operation of a Linear Layer: y = W ⊗ x
§ y: output, x: inputs, and W: weight (e.g., kernel in a conv. layer) 

Slalom’s Linear Layers (and its two problems)
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yr = W ⊗ r

Offline Preparation
(Before the query arrives) Randomly

drawn

x’ = x - r (mod q)
x’

yu = W ⊗ x’
yu

y = yu + yr (mod q)

Online Computation
(After the query arrives)

2nd Problem:
The weight is exposed to the GPU
→ Fail to support secure outsourcing
→ Fail to support private training

1st Problem:
⊗ stills run in (slow) CPU 
→ Low Throughput
(or lot of pre-computation & storage)



§Contributors send their data to SGX’s TEE/enclaves
§ Securely outsource linear-layer computation to GPUs

§ resided in with 3 non-colluding servers (U0, U1, U2)
§ can reduce to 2 servers (at ½ of the throughput)

§ Train (mostly) non-linear layers in SGX

Goten: GPU + TEE for Private Training
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Goten’s Training with GPU-Outsourcing
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§ Each server holds a secret-share of the model/data
§ a setting adopted by many existing works (e.g., Falcon)

§ Individual share by itself is totally random/meaningless
§ different from incomplete/partitioned data (e.g., federated learning)

§Candidates:
§ Some of the data contributors

§ More difficult to compromise different parties simultaneously
§ Government: Hospital/Monetary authority

§ If they are deemed trustworthy
§ Independent & Competing Cloud Server Providers

§ If they care their reputation

Non-Colluding Servers
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§ Non-colluding servers enable secure linear operation ⊗
§ U0 and U1 hold the additive secret shares (SS) of (W, x)

§ U0 holds <W>0 and <x>0
§ U1 holds <W>1 and <x>1

§ Homomorphism: linear ⊗ can be applied on <W>i and <x>i
§ Privacy: seeing <W>0 (or <W>1 ) learns nothing about W

§ When computing y = W ⊗ x, nothing exposes to the servers
§ Now we can protect W! (vs. Slalom’s leakage of W to the GPU)

Why Non-Colluding Servers?
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§ Privacy (<x>i has no information about x):
§ For each value of x, given <x>i, there exists corresponding <x>1- i

§ (Efficient) Homomorphic operation:
§ <x> + <y> = <x + y>
§ For brevity, we will omit (mod q)

§ (Efficient) Generation:
§ Geni(rx, x) generates xi for i = 0, 1
§ Rand(rx) picks <x>1 uniformly at random from Zq
§ <x>0 = x - <x>1
§ Only 1 random number generation and 1 modular addition

§ (Easily generalizes to a matrix or a tensor)

Secret Sharing x = <x>0 + <x>1 (mod q)
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How Goten’s GPU-outsourcing works?
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§High-Level Idea:

§ E0 and E1 send secret secrets of {W, x} to U0, U1
§ U0, U1, and U2 compute over the secret shares
§ E0 and E1 combine the “partial” results of U0, U1, U2

§Goal: Compute y = W⊗ x
§Without leaking any (W, x, y) to (U0, U1, U2)



How Goten’s GPU-outsourcing works?
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u, v
z = u ⊗ vz = u ⊗ v

• Gen0(rx, x) and Gen1(rx, x) are generators for an additive SS of x
• Rand(r) is a secure pseudo-random generator
• {ru, rv, rx, rW} are pre-agreed random seeds (of the generators)

§U2’s bootstrapping:
§ u ← Rand(ru), v ← Rand(rv)
§ z ← u ⊗ v

§Goal: Compute y = W⊗ x
§Without leaking any (W, x, y) to (U0, U1, U2)



How Goten’s GPU-outsourcing works?
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z = u ⊗ v
• Gen0(rx, x) and Gen1(rx, x) are generators for an additive SS of x
• Rand(r) is a secure pseudo-random generator
• {ru, rv, rx, rW} are pre-agreed random seeds (of the generators)

§U2’s bootstrapping:
§ u ← Rand(ru), v ← Rand(rv)
§ z ← u ⊗ v
§ Send z to E0 and E1

§Goal: Compute y = W⊗ x
§Without leaking any (W, x, y) to (U0, U1, U2)



How Goten’s GPU-outsourcing works?
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z = u ⊗ v

z = u ⊗ v
<x>1, <W>1, e, f

<x>0,<W>0, e, f

• Gen0(rx, x) and Gen1(rx, x) are generators for an additive SS of x
• Rand(r) is a secure pseudo-random generator
• {ru, rv, rx, rW} are pre-agreed random seeds (of the generators)

§ Ei ∈ {0, 1}’s Masking & Dispatch:
§ <W>i ← Geni(rw, W)
§ <x>i ← Geni(rx, x)
§ e = W – Rand(ru) = W – u
§ f =  x – Rand(rv) =  x  – v

§Goal: Compute y = W⊗ x
§Without leaking any (W, x, y) to (U0, U1, U2)



How Goten’s GPU-outsourcing works?
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• Rand(r) is a secure pseudo-random generator
• {ru, rv, rx, rW} are pre-agreed random seeds (of the generators)

§ Ei ∈ {0, 1}’s Masking & Dispatch:
§ <W>i ← Geni(rw, W)
§ <x>i ← Geni(rx, x)
§ e = W – Rand(ru) = W – u
§ f =  x – Rand(rv) =  x  – v
§ Send {<W>i, <x>i, e, f} to Ui

§Goal: Compute y = W⊗ x
§Without leaking any (W, x, y) to (U0, U1, U2)



How Goten’s GPU-outsourcing works?
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§Outsourced Computation:
§ U0 computes y0 = <W>0 ⊗ f + e ⊗ <x>0

§ U1 computes y1 = <W>1 ⊗ f + e ⊗ <x>1 – e ⊗ f

§Goal: Compute y = W⊗ x
§Without leaking any (W, x, y) to (U0, U1, U2)



How Goten’s GPU-outsourcing works?
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• y0 = <W>0 ⊗ f + e ⊗ <x>
• y1 = <W>1 ⊗ f + e ⊗ <x>1 – e ⊗ f

§Outsourced Computation:
§ U0 computes y0 = <W>0 ⊗ f + e ⊗ <x>0

§ U1 computes y1 = <W>1 ⊗ f + e ⊗ <x>1 – e ⊗ f
§ U0 sends y0 to E0 and E1

§ U1 sends y1 to E0 and E1

§Goal: Compute y = W⊗ x
§Without leaking any (W, x, y) to (U0, U1, U2)



How Goten’s GPU-outsourcing works?
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• y0 = <W>0 ⊗ f + e ⊗ <x>
• y1 = <W>1 ⊗ f + e ⊗ <x>1 – e ⊗ f

§ Ei ∈ {0, 1}’s reconstruction of the results:
§ E0 and E1 compute y = y0 + y1 + z

§Goal: Compute y = W⊗ x
§Without leaking any (W, x, y) to (U0, U1, U2)



§ E0 and E1 get y
§ y = y0 + y1 + z

Correctness of the GPU Outsourcing 
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§ e = W – u

§ f = x – v

= W ⊗ x
= W ⊗ f + e ⊗ x – e ⊗ f + u ⊗ v
= <W>0 ⊗ f + e ⊗<x>0 + <W>1 ⊗ f + e ⊗<x>1 – e ⊗ f + u ⊗ v

• y0 = <W>0 ⊗ f + e ⊗ <x>
• y1 = <W>1 ⊗ f + e ⊗ <x>1 – e ⊗ f



§ What each non-colluding server sees:
§ U0: <W>0, <x>0, e, f
§ U1: <W>1, <x>1, e, f
§ U2: u, v

§ They are all secret shares or random tensors
§ <W>0/1 and <x>0/1 are secret shares (by definition)
§ e = (W - u) and f = (x - v) are secret shares
§ u and v are random tensors

§ The security only holds over Zq (fixed-point integers)
§ Only then <W>0/1, <x>0/1, e, f are uniformly distributed (over their space)

Security of the GPU Outsourcing 
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§ (Linear layers’) Outsourcing protocol runs over Zq
§ yQ = WQ ⊗Q xQ mod q (as fixed points)
§ where ⊗Q denotes a linear operation over fixed points

§ But non-linear layers work with floating points
§ They expect yf from linear layers 
§ They output xf to linear layers

§We need (de)quantization!
§ WQ = Quan(Wf; θW), xQ = Quan(xf; θx)
§ yf = DeQ(yQ; θW, θx)

Quantization for Secure Outsourcing
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Quantization for Secure Outsourcing
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xf, Wf

U0

U2

U1

E0 Quan Mask Unmask DeQ yf

xf, Wf
E1 Quan Mask Unmask DeQ yf



§ Slalom (de)quantizes for cryptographic finite field: 
§ Static Quantization: xQ = round(xf· 28), wQ = round(wf· 28)
§ Static Dequantization: yf = round(yQ· 2-8)
§ θW and θx are fixed to 28

§ The weight (W) would fluctuate during training
§ A problem explicitly mentioned in Slalom’s paper!
§ When the entries of Wf becomes very small, yQ becomes 0

§ wQ = round(Wf· 28) ≈ 0 → yQ = W Q ⊗Q xQ ≈ 0
§ When the entries Wf becomes very big, yQbecomes trash

§ wQ ≈ round(Wf · 28) > q → overflow
§ Slalom sets q ≈ 224

§ e.g., Wf ≈ 217 → wQ ≈ round(217 · 28) ≈ 225 > q

Yet another problem: Static Quantization
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§ The quantization param. (θW, θx) varies with the inputs
§Adapt from SWALP[Yang et al.]

§ a training scheme for low-bitwidth environment
§θw is the magnitude of the maximum values of W

§ θw = ⌊log2 ◦ max ◦ abs(W)⌋
§ θx is also found similarly

§WQ = Quan(Wf; θw) = clip(⌊W· 2-θw+6⌋, -27, 27) 
§ xQ is derived similarly
§ yf = yQ · 2θw+θx-12

Goten’s Dynamic Quantization
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Guandao Yang, Tianyi Zhang, Polina Kirichenko, Junwen Bai, Andrew Gordon Wilson, Christopher De Sa.
SWALP : Stochastic Weight Averaging in Low-Precision Training.
ICML 2019



§Accuracy drops <1%
§ from our experiments running with VGG-11 over CIFAR-10

§Dynamic quan. allows “proper utilization” of the bitwidth
§ The entries in WQ and xQ would not become 0 or overflow

Dynamic Quantization’s Implications
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§ Back-prop. of linear layers are also linear operations
§e.g., fully-connected layers are all matrix multiplications

§ Forward: y = x × WT

§ Backward for W: dW = dyT × x
§ Backward for x: dx = dy × W

How about Back-propagation?
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§Goten attains >89% accuracy in 34 hours 
§ vs. Falcon’s 5 weeks (accuracy not reported)

§ 132× throughput speed up over Falcon

Performance: Training over CIFAR-10
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Framework GPU | TEE NN Architecture Throughput Speedup
Falcon ❌|❌ VGG-16 1482 132×
CaffeScone* ❌|✔ VGG-11 28800 6.84×
Goten ✔|✔ VGG-11 196733 -

(Images/hour)

[*] Our pure-TEE private training framework over Caffe & SCONE (Secure Container Environment)

§ GPU: Nvidia V100 16GB
§ CPU (w/ SGX): Intel i7-7700K
§ Network: Google Cloud (8Gbps & <5ms latency)
§ We run “hybrid” experiments due to resource constraints

§ More details in our paper



§ Showcase application involving sensitive training data
§ IDC: The most common type of breast cancer
§Dataset: Images of women’s breast tissue [Cruz-Roa et al.]

Invasive ductal carcinoma (IDC) detection
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Accuracy 81% 82% 83% 84% 85% 86%
Speedup 8.53× 13.7× 4.27× 6.33× 3.42× 7.28×
Time (min) 1.25 1.56 13.1 16.9 31.2 46.8

Cruz-Roa et al.
Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks.
Medical Imaging: Digital Pathology 2014.



§ Large batch size is better for Goten
§ Speedup ratio vs. Bandwidth
§CaffeScone (Our Pure-TEE Solution)’s optimal batch size

§Memory issues of SGX and our mitigation
§How to remove the third server

What we didn’t cover
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§A starting point for TEE + GPU private training
§ The Best of Both Worlds

§Our Techniques:
§ Lightweight Crypto for GPU-Outsourcing
§ Dynamic Quantization for Weight Fluctuation during Training

§Code: github.com/goten-team/Goten
§Our Another (Pure-Crypto) Secure Solution

§ “GPU-Friendly Oblivious and Rapid Classification Engine”
§ Conditionally Accepted by Usenix Security 2021

§Contact: {luciengkl, sherman}@ie.cuhk.edu.hk

Closing Remarks
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https://github.com/goten-team/Goten


§ “Understand” (悟) the “sky” (天)

Goten
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