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Privacy of ”Big” Training Data

» Sensitive
— Medical Image analysis, Child Exploitation Imagery, efc.
— Privacy laws & Regulations, e.g., GDPR
 Massive
— Hardly any single entity’s data is sufficient
* Private Training
— No one learns anything about the model & other’s data
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Why Federated Learning is not enough?

* Federated Learning:
— Each data contributor train DNN locally
— They exchange the DNN'’s weight frequently

LONG UVE THE REVOLUTION.
OUR NEXT MEETING WILL BE
 Problems: o
— Every contributor can use the DNN
» No rate-limiting, even for non-agreed uses
— Contributors may steal others’ data
» Model Inversion Attack [Fredrikson et al ]

— Noisy/Implicit data # Data privacy

AHA, FOUND THEM!

WHEN YOU TRAIN PREDICTIVE MODELS
ON INPUT FROM YOUR USERS, IT CAN
LEAK INFORMATION IN UNEXPECTED WAYS.

xkcd.com/2169

Preliminary: TEE & GPU
TEE: Trusted Execution Environment (e.g., SGX)

& protect the data’s privacy inside
— even the machine owner cannot read it
& processes data efficiently as plaintext on CPU

— too slow for batched linear operations

SGX

GPU: Graphics Processing Unit

& GPU can speed up the linear layers in DNNs
— The most time-consuming part in DNNs
& GPU does not have TEE

— lack of data privacy & model privacy!
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Goten: GPU + TEE for Private Training

« Contributors send their data to SGX's TEE/enclaves

» Securely outsource linear-layer computation to GPUs

— resided in with 3 non-colluding servers (U, U4, U,)

— can reduce to 2 servers (at 72 of the throughput)
Train (mostly) non-linear layers in SGX

Non-Colluding Servers in Goten

Each server holds a secret-share of the model/data
Individual share by itself is totally meaningless
Candidates:

— Some of the Data Contributors

— Government: Hospital/Monetary authority

— Independent & Competing Cloud Server Providers

GPU-Outsourcing Protocol for Linear Layers (Overview)
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(Light-Weight) Crypto Tool: Additive Secret Shares (SS)

e X=<x>;+ <x>;(mod q)

— <x>p and <x>, is a pair of additive SSs for x
« Privacy (<x>; has no information about x)

— For each value of x, given <x>;, 3 corresponding <x>_;
» (Efficient) Homomorphic operation:

— <X>+<y>=<x+y>

— For brevity, we will omit (mod q)

GPU-Outsourcing Protocol for Linear Layers (Details)

Goal: Compute y = WQ x (Q is the linear operation)
Without leaking any (W, x, y) to (Ug, U4, Uy)

1: Uz :u < Rand(ry,),v < Rand(r,)
2: Us = Ep,E1:z2=u®uv
for ¢ = 0, 1 (in parallel)
3: E;: — U; : (W); < Gen;(rw, W), (x); < Gen;(rz, x),
e = W — Rand(r,,), f = x — Rand(r,)
4 Ui —EnEi:yu=W)i®f+e®(x)i—i-e® f
endfor

5: Eo,Ei:y=z2z4+y+wn1

Geng(ry, x) and Geny(ry, x) are generators for <x>; and <x>,
Rand(r) is a secure pseudo-random generator
{r,, r,, v, Ty} are pre-agreed random seeds

O|y=votyi+z
O\ <y, <Wsy, 6, f

€| <oy, <Woe, f y1=<Wo@f+te@<x>—eQ@f

O|ly=yv+y+z 4

Correctness
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Security

What each non-colluding server sees:
— UO: <W>q, <x>g, €,
— U1 <W>,, <x>4, e, f
- U2:u,v
They are all secret shares or random tensors:
— <W>q,; and <x>q,4 are secret shares (by definition)
— e=(W-u)and f= (x- v) are secret shares
— u and v are random tensors

Performance on Training

CIFAR-10: Common Benchmark for Computer Vision
« Goten attains >89% accuracy in 34 hours
— vs. Falcon’s 5 weeks (accuracy not reported)
« 132x throughput speed up over Falcon
Falcon [Sameer Wagh et al]: State-of-the-Art Crypto Approach

[ Framoworc SRS I R

Falcon VGG-16 1482 132x
CaffeScone” )( | VGG-11 28800 6.84x
Goten VARYS VGG-11 196733 -

[*] Our pure-TEE private training framework over Caffe & SCONE (Secure Container Environment)
Training for Invasive Ductal Carcinoma (IDC) Detection

« Showcase application involving sensitive training data
« IDC: The most common type of breast cancer
« Dataset: Images of women’s breast tissue [CruzRoa et al]

Accuracy 81% 82% 83% 84% 85% 86%
Speedup 8.53x | 13.7x% 4.27% 6.33x 3.42x 7.28x
Time (min) 1.25 1.56 13.1 16.9 31.2 46.8

= GPU: Nvidia V100 16GB
= CPU (w/ SGX): Intel i7-7700K
= Network: Google Cloud (8Gbps & <5ms latency)

Conclusion

» Best of Both Worlds: TEE & GPU
*  Our Techniques:
— Lightweight Crypto for GPU-Outsourcing
— Dynamic Quantization for Weight Fluctuation during Training
« Future Work: GPU-Friendly Pure-Crypto Solution [Ng and Chow]
e Code: github.com/goten-team/Goten
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