usenix

THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Security Symposium
I |

GForce: GPU-Friendly Oblivious and Rapid
Neural Network Inference

Lucien K. L. Ng and Sherman S. M. Chow

Chinese University of Hong Kong (CUHK), Hong Kong

Department of Information Engineering 8

Query Privacy in NN Inference

= Queries in inference can be sensitive
= Social applications, Medical image analysis, Computer vision, ...

=The “natural” way will leak them to the server

> o S
A o —— g
¢ DNN

Q

GForce 2/23

Service Provider

Revealing the model to all clients?

= Local inference well protects the client
= The model itself is an intellectual property
= One may reverse-engineer the model o recover fraining data

7
|27
S -

¥ DNN g

__>

‘ @ DNN
g

DNN(x)

&

GForce 3/23

Oblivious NN Inference

= The client can learn DNN(x) but not DNN
= The server cannot learn anything about x

GForce 4/23

GForce

= Oblivious, rapid, and accurate NN Inference

= GForce attains ~73% in 0.4s (the first for purely-crypto solutions)
= (e.g., no frusted execution environment, no non-colluding server)
= over CIFAR-100: Image dataset consisting of 100 classes
= Delphi (prior best [USS20]): ~68% in 14s (or ~66% in 2.65)

= Spoiler Alert:
= |: Make (non-linear) Crypto GPU-friendly
= “GPU-DGK"

= |I: Tackle the (notorious) issue of Accuracy vs. Bitwidth
= “SRT” for “SWALP”

GForce 5/23

Basic: Dividing a NN

= Treat linear layers and non-linear layers differently
= non-linear: e.g., RelLU, Maxpool
= linear: e.g., Convolution, Matrix Multiplication

Linear Non-Linear Linear [> [>
t. B Layer Layer Layer

GForce 6/23

Secure On-/Offline Share Comp.

=To compute a linear function f: f(x) = f(x-r) + f(r)
= Offline pre-compute f(r) with (slow) Homomorphic Encryption (HE)
= Online compute f(x-r) in GPU in a batch of k (100 x faster than CPU)
= (x-r, r) are like Additive Secret Share (SS) of x: (x)3 + (x)¢ =x (mod q)

[-]is Additive HE (AHE) Ciphertext
'ffhne Pho‘ C S8 e ﬁ Ik
q C S —
[f(r) + 7] ! -— 1%}

Input----------;---C-----ZXSS---- 4
& (x)~—r v — 1€ = <X>S n (<X>C B T(;) 'nllne Pho,
) 0wt (1001 = 1) +* (IO = 1= m

Linear Layers by SOS

= Secure On-/Offline Share Comp. (SOS) suits linear layers
= e.g., used by the prior art Delphi [USS20]

= Operation of a linear layer:y =W & x
= y. output; x: inputs; W: weight (e.g., kernel in a conv. layer)

= The linear layers can be tfreated as a linear function f,
“ fw(x) =W & x
= apply SOS 1o fy

= Can we call SOS for non-linear layers?

GForce 8/23

GPU tor Non-Linear Layers?

= Non-linear layers need slow garbled circuit (GC)

= Delphi replaces some RelLU by quadratic approximation
= Computing x2 is fast with additive SS and Beaver’s trick

= Problem 1: Approximation = Worse Accurocy

= Problem 2: Maxpool is still using slow GC _
= Maxpool: another popular non-linear layer

Accuracy (%
(=)}
N

(<))
o

— — all-ReLU baseline
58 —8— RelLU + Quadratic
—¥— ReLU + Identity

. 0 5 10 15 20 25,
orce
Number of non-ReLU layers

|: GPU for Non-Linear Layers!

= Comparison (x £y) is a fundamental operation
= ReLU(x) = Max(x, 0)
= Maxpool({X}o.3) = Max(xo, X7, X2, X3)
= e.qg., for a pooling window of size 4
* Max(x, y) = (x<y) - {y-x) +x

output
I

Filter: (2 x 2)
Stride: (2, 2)

GForce M&XpOOl(X) 10/23

Recap: DGK Protocol

= DGK uses AHE for Comparison
= Each input a or 8 and get an additive SS of (a < 6)

6 o
‘ Bit-decomposition ‘ Bit-decomposition
6y 6, 6, 6o 0 ar | o oq
@ & Randomly draw &° from {0, 1} s o
ad . U=1-2:65 1
6 =11if (any byis 0) else O & [bi]l=([U]+([eg]-[6]])+3 2jeisrey [oDB 1) -1y, i
55 @ 5C = (a<8) Randomly

GForce 11/23

AHE-10-SOS

= Observation: SOS is appliable to many AHE Protocols

= Non-linear “becomes’ linear!

= Batch many instances to fully utilize GPU in online phase

-1

.1I

1

The Original Protocol

Offline Phase

Query-Independent Operations

Query-Independent Operations

Query-Dependent Operations

A Batch of AHE Operations {f(x;)}

X; [x] Linear
; Function
y; = fix) &) fl

Online Phase

Query-Dependent Operations

SOS Online Phase for (f, x)) ﬂg@
|=t

Other Query-Dependent Operations

Other Query-Dependent Operations

GPU-DGK = AHE-to-SOS + DGK

= Transform the core AHE steps into linear functions
= dgk; ..r(8) = (U+a-6 +3-xor ,(8))r; (xor() defined in the paper)
= | is the bit position, u and r are server’'s randomness
= but «, 8is the online input of the server/client

= Server can’t know/precompute dgk,() in the offline phase

= We devise a trick to “let the server know” a offline

= by deriving 6 from a and the actual online inputs x and vy
= (More detail in our paper)

| ‘—(X)C'(Y)C
@ . erupek | E{S}

GForce 13/23

GPU-DGK for Non-Linear Layers

“(Max(x, y)) = (X <y)- ((y) - () +{x) s —— T 0%°

= Notation: (x) = {{x)S, (x)C} - | GPU-DGK —

© Max(x, y) = (x y) - (yx) +x K<y o] K<y m
= Max = RelLU and Maxpool
= Better (Online) Performance w/o (GC) approx.!

non-approximate
garble circuit
opproach ([USS18])

Gazelle 1754.00ms 2950.00ms

GForce 65.15ms 27x% 99.02ms 34 x

Number of input elements = 217
GForce 14/23

I: Accuracy vs. Bitwidth

= AHE/Additive §S: Operating in Z,, (integers)

= Parameters are mostly floating points, w/ highly dynamic ranges
= from 2?7 to 21/

= Need high-bitwidth integers to simulate floating points
= may need integers with 255(=127 + 127 +1) bitwidth

= Small Z, (low bitwidth) = Worse Accuracy
= Error in conversion between floating points and integers
= Large 1, (high bitwidth) = Worse Performance
= GC: larger circuit
= DGK: more "bit comparison™: [Oi]=[ci]+([xi]-[Yil)+3 2jepi+1: o1 DYl
= GPU has limited bitwidth for efficient computation over integers

GForce 15/23

(De-)Quantizing Linear Layers

= Quantize the NN using SWALP [ICML19]
= Stochastic Weight Averaging in Low-Precision Training
= almost as good as floating
= Quanit(): find maximum = scale up/down = round to int.

= De-Q(): scale up/down

..................

Normal DNN wgcl) ,wgc?)
O oo o A L ol
T W
wld ' w®
0 1 1 2 3); 3 4
:1:;0) —+ Quant mg;)): Coth xgg): De-Q —iu,"ﬁé'éf}'i_;). Acty xgc) Quant CBEQ)‘ Corth iQ?Z/'z's

...

Issues in adopting SWALP

= How to find the maximum (securely and efficiently)?
= How to represent floating points after dequantization?

= How to scale downe
= Naive division over additive SS ruins low-bitwidth NNs

= How to do roundinge
= Experiments over VGG-16 shows:

Rounding w/ . .

CIFAR-10 93.22% 10.06%
CIFAR-100 72.83% 1.03%

GForce 17/23

Precomputation & Fusing

= Finding the Maximum: Precompute using training data

= Fusing (De)quantization into just a division!
= De-Q o ReLU o Maxpool o Quant
= (ReLU o Maxpool) / d
= d is computed with the precomputed maximum
= No floating points now

GForce 18/23

Stochastic Rounding Truncation

= We form a new SRT layer (also utilizihng AHE-to-SOS) that
= performs stochastic rounding

= corrects the error in naive division/truncation (“for free”)
= (More detail in our paper)

SWALP-trained DNN

T — L, remm————— X xz X
—Q De-Q L7 ! Pool i—f> Act; ! Quant <,
| T
GForce DNN T __________ F S e JT
A (@) MEJWIE SawmO)

MaxpooIQ < L ReLUg F-25f SRTo 2 ...

GForce 19/23

;
‘ Server

End-to-End Workflow

Client ZE)
. SeTUp: <3;(0)>C lnput laver I.R))>S
= Training a NN with SWALP T —
= Precompute {d}} for SRT Layers ()€ et (xS
I 11V o7 €] SN
= Inference: : Maxpoal Layer =<
- Offline computation with AHE ~ (z®)¢ e)3
= Online: Run our GPU-friendly protocols ReLU Layer
= We make all layers GPU-friendly ()¢ = ()
SRT Layer Je
(x>

= They jointly run them layer-by-layer
Y] Y Y y-lay (¢ o
Linear Lavyer

Quiput Layer el

output

Security Analysis

= GForce assumes semi-honest client and server
= The client learns

= DNN(x), the query result
= The server learns

= {M;}, the weight (and bias) in linear layers

= Common knowledge/leakage:
= DNN architecture

= {dj} in SRT Layers (~4 bits for each layer)

GForce

21/23

Overall Accuracy and Latency

=Shortest (Online) Latency: (CIFAR-10/100: 150/350ms)
= Highest Accuracy in CIFAR-100 (73% vs. 68% of Delphi)

0.94 A
) GForce: VGG-16
. .
0.90
§ _ § 0.70
5 051
~ 0.86 L 0.68 -
0.84 1
CIFAR-10/, . CIFAR-100
0.82 1 ¢ | (100 image classes)
102 10° 10* 10° 10° 107 T ' e
Online Latency (ms) Online Latency (ms)
GPU: Nvidia V100 16GB Network: Google Cloud (8Gbps & <5ms latency)

CPU: Intel Xeon (Skylake) CPUs at 2GHz GForce 22/23

Final Remarks

= Utilizing GPU for the entire model
= Further applications:

= Integrating with Delphi

= Oblivious Decision-Tree Inference (vs. SS-based? [NDSS21])
= Code: github.com/Lucieno/gforce-public

= SEAL W/ noise flooding (for AHE) and PyTorch (for GPU & NN)
= Also see our GPU-friendly work for training [AAAI21]

= GPU-Qutsourcing Trusted Execution of Neural Network Training
= Contact: {luciengkl, sherman}@ie.cuhk.edu.hk

GForce 23/23

https://github.com/Lucieno/gforce-public

