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Query Privacy in NN Inference

= Queries in inference can be sensitive
= Social applications, Medical image analysis, Computer vision, ...

=The “natural” way will leak them to the server
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Revealing the model to all clients?

= Local inference well protects the client
= The model itself is an intellectual property
= One may reverse-engineer the model o recover fraining data
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Oblivious NN Inference

= The client can learn DNN(x) but not DNN
= The server cannot learn anything about x
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GForce

= Oblivious, rapid, and accurate NN Inference

= GForce attains ~73% in 0.4s (the first for purely-crypto solutions)
= (e.g., no frusted execution environment, no non-colluding server)
= over CIFAR-100: Image dataset consisting of 100 classes
= Delphi (prior best [USS20]): ~68% in 14s (or ~66% in 2.65)

= Spoiler Alert:
= |: Make (non-linear) Crypto GPU-friendly
= “GPU-DGK"

= |I: Tackle the (notorious) issue of Accuracy vs. Bitwidth
= “SRT” for “SWALP”
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Basic: Dividing a NN

= Treat linear layers and non-linear layers differently
= non-linear: e.g., RelLU, Maxpool
= linear: e.g., Convolution, Matrix Multiplication
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Secure On-/Offline Share Comp.

=To compute a linear function f: f(x) = f(x-r) + f(r)
= Offline pre-compute f(r) with (slow) Homomorphic Encryption (HE)
= Online compute f(x-r) in GPU in a batch of k (100 x faster than CPU)
= (x-r, r) are like Additive Secret Share (SS) of x: (x)3 + (x)¢ =x (mod q)

[-]is Additive HE (AHE) Ciphertext
'ffhne Pho‘ C S8 e ﬁ Ik
q C S —
[f(r ) + 7] ! -— 1%}

Input----------;---C-----ZXSS---- 4
& (x)~—r v — 1€ = <X>S n (<X>C B T(;) 'nllne Pho,
) 0wt (1001 = 1) +* (IO = 1= m




Linear Layers by SOS

= Secure On-/Offline Share Comp. (SOS) suits linear layers
= e.g., used by the prior art Delphi [USS20]

= Operation of a linear layer:y =W & x
= y. output; x: inputs; W: weight (e.g., kernel in a conv. layer)

= The linear layers can be tfreated as a linear function f,
“ fw(x) =W & x
= apply SOS 1o fy

= Can we call SOS for non-linear layers?
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GPU tor Non-Linear Layers?

= Non-linear layers need slow garbled circuit (GC)

= Delphi replaces some RelLU by quadratic approximation
= Computing x2 is fast with additive SS and Beaver’s trick

= Problem 1: Approximation = Worse Accurocy

= Problem 2: Maxpool is still using slow GC _
= Maxpool: another popular non-linear layer
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|: GPU for Non-Linear Layers!

= Comparison (x £y) is a fundamental operation
= ReLU(x) = Max(x, 0)
= Maxpool({X}o.3) = Max(xo, X7, X2, X3)
= e.qg., for a pooling window of size 4
* Max(x, y) = (x<y) - {y-x) +x

output
I

Filter: (2 x 2)
Stride: (2, 2)
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Recap: DGK Protocol

= DGK uses AHE for Comparison
= Each input a or 8 and get an additive SS of (a < 6)
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AHE-10-SOS

= Observation: SOS is appliable to many AHE Protocols

= Non-linear “becomes’ linear!

= Batch many instances to fully utilize GPU in online phase
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GPU-DGK = AHE-to-SOS + DGK

= Transform the core AHE steps into linear functions
= dgk;  ..r(8) = (U+a-6 +3-xor ,(8))r; (xor() defined in the paper)
= | is the bit position, u and r are server’'s randomness
= but «, 8is the online input of the server/client

= Server can’t know/precompute dgk,() in the offline phase

= We devise a trick to “let the server know” a offline

= by deriving 6 from a and the actual online inputs x and vy
= (More detail in our paper)
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GPU-DGK for Non-Linear Layers

“(Max(x, y)) = (X <y)- ((y) - () +{x) s —— T 0%°

= Notation: (x) = {{x)S, (x)C} - | GPU-DGK —

© Max(x, y) = (x y) - (yx) +x K<y o] K<y m
= Max = RelLU and Maxpool
= Better (Online) Performance w/o (GC) approx.!

non-approximate
garble circuit
opproach ([USS18])

Gazelle 1754.00ms 2950.00ms

GForce 65.15ms 27x% 99.02ms 34 x

Number of input elements = 217
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I: Accuracy vs. Bitwidth

= AHE/Additive §S: Operating in Z,, (integers)

= Parameters are mostly floating points, w/ highly dynamic ranges
= from 2?7 to 21/

= Need high-bitwidth integers to simulate floating points
= may need integers with 255(=127 + 127 +1) bitwidth

= Small Z, (low bitwidth) = Worse Accuracy
= Error in conversion between floating points and integers
= Large 1, (high bitwidth) = Worse Performance
= GC: larger circuit
= DGK: more "bit comparison™: [Oi]=[ci]+([xi]-[Yil)+3 2jepi+1: o1 DYl
= GPU has limited bitwidth for efficient computation over integers
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(De-)Quantizing Linear Layers

= Quantize the NN using SWALP [ICML19]
= Stochastic Weight Averaging in Low-Precision Training
= almost as good as floating
= Quanit(): find maximum = scale up/down = round to int.

= De-Q(): scale up/down
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Issues in adopting SWALP

= How to find the maximum (securely and efficiently)?
= How to represent floating points after dequantization?

= How to scale downe
= Naive division over additive SS ruins low-bitwidth NNs

= How to do roundinge
= Experiments over VGG-16 shows:

Rounding w/ . .

CIFAR-10 93.22% 10.06%
CIFAR-100 72.83% 1.03%
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Precomputation & Fusing

= Finding the Maximum: Precompute using training data

= Fusing (De)quantization into just a division!
= De-Q o ReLU o Maxpool o Quant
= (ReLU o Maxpool) / d
= d is computed with the precomputed maximum
= No floating points now
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Stochastic Rounding Truncation

= We form a new SRT layer (also utilizihng AHE-to-SOS) that
= performs stochastic rounding

= corrects the error in naive division/truncation (“for free”)
= (More detail in our paper)
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End-to-End Workflow
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Security Analysis

= GForce assumes semi-honest client and server
= The client learns

= DNN(x), the query result
= The server learns

= {M;}, the weight (and bias) in linear layers

= Common knowledge/leakage:
= DNN architecture

= {dj} in SRT Layers (~4 bits for each layer)

GForce
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Overall Accuracy and Latency

=Shortest (Online) Latency: (CIFAR-10/100: 150/350ms)
= Highest Accuracy in CIFAR-100 (73% vs. 68% of Delphi)
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Final Remarks

= Utilizing GPU for the entire model
= Further applications:

= Integrating with Delphi

= Oblivious Decision-Tree Inference (vs. SS-based? [NDSS21])
= Code: github.com/Lucieno/gforce-public

= SEAL W/ noise flooding (for AHE) and PyTorch (for GPU & NN)
= Also see our GPU-friendly work for training [AAAI21]

= GPU-Qutsourcing Trusted Execution of Neural Network Training
= Contact: {luciengkl, sherman}@ie.cuhk.edu.hk
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