

GForce: GPU-Friendly Oblivious and Rapid Neural Network Inference

Lucien K. L. Ng and Sherman S. M. Chow

Department of Information Engineering Chinese University of Hong Kong (CUHK), Hong Kong

Query Privacy in NN Inference

- Queries in inference can be sensitive
 - Social applications, Medical image analysis, Computer vision, ...
- The "natural" way will leak them to the server

GForce 2/23

Revealing the model to all clients?

- Local inference well protects the client
 - The model itself is an intellectual property
 - One may reverse-engineer the model to recover training data

Oblivious NN Inference

- The client can learn DNN(x) but not DNN
- The server cannot learn anything about x

GForce 4/23

GForce

- Oblivious, rapid, and accurate NN Inference
- GForce attains ~73% in 0.4s (the first for purely-crypto solutions)
 - (e.g., no trusted execution environment, no non-colluding server)
 - over CIFAR-100: Image dataset consisting of 100 classes
 - Delphi (prior best [USS20]): ~68% in 14s (or ~66% in 2.6s)
- Spoiler Alert:
 - I: Make (non-linear) Crypto GPU-friendly
 - "GPU-DGK"
 - II: Tackle the (notorious) issue of Accuracy vs. Bitwidth
 - "SRT" for "SWALP"

GForce 5/23

Basic: Dividing a NN

- Treat <u>linear layers</u> and <u>non-linear layers</u> differently
 - non-linear: e.g., ReLU, Maxpool
 - linear: e.g., Convolution, Matrix Multiplication

GForce 6/23

Secure On-/Offline Share Comp.

- To compute a linear function f: f(x) = f(x-r) + f(r)
 - Offline pre-compute f(r) with (slow) Homomorphic Encryption (HE)
 - Online compute f(x-r) in GPU in a batch of k (100× faster than CPU)
 - (x-r, r) are like Additive Secret Share (SS) of x: $\langle x \rangle^S + \langle x \rangle^C = x \pmod{q}$

Linear Layers by SOS

- Secure On-/Offline Share Comp. (SOS) suits linear layers
 - e.g., used by the prior art Delphi [USS20]
- Operation of a linear layer: $y = W \otimes x$
 - y: output; x: inputs; W: weight (e.g., kernel in a conv. layer)
- The linear layers can be treated as a linear function f_W
 - $f_{W}(x) = W \otimes x$
 - apply SOS to f_W
- Can we call SOS for non-linear layers?

GForce 8/23

GPU for Non-Linear Layers?

- Non-linear layers need slow garbled circuit (GC)
- Delphi replaces some ReLU by quadratic approximation
 - Computing x² is fast with additive SS and Beaver's trick
- Problem 1: Approximation → Worse Accuracy
- Problem 2: Maxpool is still using slow GC
 - Maxpool: another popular non-linear layer

1: GPU for Non-Linear Layers!

- Comparison $(x \le y)$ is a fundamental operation
 - ReLU(x) = Max(x, 0)
 - Maxpool($\{x\}_{0..3}$) = Max(x_0, x_1, x_2, x_3)
 - e.g., for a pooling window of size 4
 - $Max(x, y) = (x \le y) \cdot (y-x) + x$

ReLU(x)

Maxpool(x)

Recap: DGK Protocol

- DGK uses AHE for Comparison
- Each input α or θ and get an additive SS of $(\alpha \le \theta)$

GForce 11/23

AHE-to-SOS

- Observation: SOS is appliable to many AHE Protocols
- Non-linear "becomes" linear!
- Batch many instances to fully utilize GPU in online phase

GForce 12/23

GPU-DGK = AHE-to-SOS + DGK

- Transform the core AHE steps into linear functions
 - $dgk_{i, \upsilon, \alpha, r}(\theta) = (\upsilon + \alpha_i \theta_i + 3 \cdot xor_{i, \alpha}(\theta)) \cdot r_{x, i}$ (xor() defined in the paper)
 - *i* is the bit position, *u* and *r* are server's randomness
 - but α , β is the **online** input of the server/client
- Server can't know/precompute $dgk_{\alpha}()$ in the offline phase
- We devise a trick to "let the server know" α offline
- by deriving θ from α and the actual online inputs x and y
 - (More detail in our paper)

Force 13,

GPU-DGK for Non-Linear Layers

- $\langle Max(x, y) \rangle = \langle x \leq y \rangle \cdot (\langle y \rangle \langle x \rangle) + \langle x \rangle$
 - Notation: $\langle x \rangle = \{\langle x \rangle^S, \langle x \rangle^C\}$
 - $Max(x, y) = (x \le y) \cdot (y-x) + x$

- Max → ReLU and Maxpool
- Better (Online) Performance w/o (GC) approx.!

non-approximate garble circuit approach ([USS18])

⟨x⟩^C,⟨y⟩^C

Framework	ReLU	Speedup	Maxpool	Speedup
Gazelle	1754.00ms	-	2950.00ms	-
GForce	65.15ms	27×	99.02ms	34 ×

Number of input elements = 2^{17}

GForce

II: Accuracy vs. Bitwidth

- AHE/Additive SS: Operating in \mathbf{Z}_{q} (integers)
 - Parameters are mostly floating points, w/ highly dynamic ranges
 - from 2^{-127} to 2^{127}
 - Need high-bitwidth integers to simulate floating points
 - may need integers with 255(=127 + 127 +1) bitwidth
- Small \mathbf{Z}_{α} (low bitwidth) \rightarrow Worse Accuracy
 - Error in conversion between floating points and integers
- Large \mathbf{Z}_{α} (high bitwidth) \rightarrow Worse Performance
 - GC: larger circuit
 - DGK: more "bit comparison": $[b_i] = [a_i] + ([x_i] [y_i]) + 3 \sum_{j \in [i+1: \ell-1]} [x_i \oplus y_j]$
 - GPU has limited bitwidth for efficient computation over integers

GForce 15/23

(De-)Quantizing Linear Layers

- Quantize the NN using SWALP [ICML19]
 - Stochastic Weight Averaging in Low-Precision Training
 - almost as good as floating
- Quant(): find maximum → scale up/down → round to int.
- De-Q(): scale up/down

 Normal DNN $w_f^{(1)}$ $x_f^{(0)}$ $x_f^{(0)}$ SWALP-trained DNN $w_Q^{(1)}$ $x_f^{(1)}$ $x_f^{(2)}$ $x_f^{(2)}$ $x_f^{(2)}$ $x_f^{(3)}$ $x_f^{(4)}$ $x_f^{(4)}$ $x_f^{(2)}$ $x_f^{(2)}$ $x_f^{(3)}$ Quant $x_Q^{(2)}$ $x_Q^{(4)}$ $x_Q^{(4)}$

Issues in adopting SWALP

- How to find the maximum (securely and efficiently)?
- How to represent floating points after dequantization?
- How to scale down?
 - Naive division over additive SS ruins low-bitwidth NNs
- How to do rounding?
- Experiments over VGG-16 shows:

Dataset	Rounding w/ Proper Scale Down	Naive Division
CIFAR-10	93.22%	10.06%
CIFAR-100	72.83%	1.03%

GForce 17/23

Precomputation & Fusing

- Finding the Maximum: Precompute using training data
- Fusing (De)quantization into just a division!
 - De-Q o ReLU o Maxpool o Quant
 - = (ReLU o Maxpool) / d
 - d is computed with the precomputed maximum
 - No floating points now

GForce 18/23

Stochastic **R**ounding **I**runcation

- We form a new SRT layer (also utilizing AHE-to-SOS) that
- performs stochastic rounding
- corrects the error in naive division/truncation ("for free")
 - (More detail in our paper)

19/23

End-to-End Workflow

- Setup:
 - Training a NN with SWALP
 - Precompute {d_i} for SRT Layers
- Inference:
 - Offline computation with AHE
 - Online: Run our GPU-friendly protocols

GForce

- We make all layers GPU-friendly
- They jointly run them layer-by-layer

Security Analysis

- GForce assumes semi-honest client and server
- The client learns
 - DNN(x), the query result
- The server learns
 - {M_i}, the weight (and bias) in linear layers
- Common knowledge/leakage:
 - DNN architecture
 - {d_i} in SRT Layers (~4 bits for each layer)

GForce 21/23

Overall Accuracy and Latency

- Shortest (Online) Latency: (CIFAR-10/100: 150/350ms)
- Highest Accuracy in CIFAR-100 (73% vs. 68% of Delphi)

Final Remarks

- Utilizing GPU for the entire model
- Further applications:
 - Integrating with Delphi
 - Oblivious Decision-Tree Inference (vs. SS-based? [NDSS21])
- Code: github.com/Lucieno/gforce-public
 - SEAL w/ noise flooding (for AHE) and PyTorch (for GPU & NN)
- Also see our GPU-friendly work for training [AAAI21]
 - <u>GPU-Outsourcing</u> <u>Trusted</u> <u>Execution of</u> <u>Neural Network Training
 </u>
- Contact: {luciengkl, sherman}@ie.cuhk.edu.hk

GForce 23/23